Skip to main content
Log in

Radiochemical synthesis and pre-clinical evaluation of [68Ga]Ga-FAPI-4 formulated using in-house developed FAPI-4 kit

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present work describes the formulation of a lyophilized Fibroblast Activation Protein Inhibitor-4 (FAPI-4) kit for preparation of [68Ga]Ga-FAPI-4 in high radiochemical yield (RCY) using either generator or cyclotron produced 68GaCl3, suitable for Positron Emission Tomography (PET) based diagnosis of cancers over-expressing Fibroblast Activation Protein (FAP). Experimental parameters such as concentration of FAPI-4, buffer content, storage conditions and shelf-life were optimized to ensure > 95% RCY to utilize the kit for multi-patient dose formulations. A lyophilized FAPI-4 kit containing 50 µg of FAPI-4 ligand could be successfully optimized which consistently yielded [68Ga]Ga-FAPI-4 in > 95% RCY on labeling with ~ 1.11 GBq of 68GaCl3. [68Ga]Ga-FAPI-4 retained > 95% radiochemical purity (RCP) even after 2 h post labeling when stored at ambient temperature. The kits stored below − 20  °C reproduced the labeling profile up to a period of ~ 3 months (period of study). In the in vitro cell binding experiments performed in HT29 cells, [68Ga]Ga-FAPI-4 exhibited specific binding to FAP (16.1 ± 1.8%ID in 106 cells). In the biodistribution studies performed in female SCID mice bearing HT29 colorectal adenocarcinoma, [68Ga]Ga-FAPI-4 exhibited tumor uptake of 3.8 ± 0.3% ID/g at 1 h post-injection. The above results demonstrate the utility of developed FAPI-4 kits for formulation of [68Ga]Ga-FAPI-4 for PET imaging of FAP over-expressing cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu F, Qi L, Liu B et al (2015) Fibroblast activation protein overexpression and clinical implications in solid tumors: a meta-analysis. PLoS ONE 10:e0116683. https://doi.org/10.1371/journal.pone.0116683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moon ES, Elvas F, Vliegen G et al (2020) Targeting fibroblast activation protein (FAP): next generation PET radiotracers using squaramide coupled bifunctional DOTA and DATA(5m) chelators. EJNMMI Radiopharm Chem 5:19. https://doi.org/10.1186/s41181-020-00102-z

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mori Y, Dendl K, Cardinale J et al (2023) FAPI PET: fibroblast activation protein inhibitor use in oncologic and nononcologic disease. Radiology. https://doi.org/10.1148/radiol.220749

    Article  PubMed  Google Scholar 

  4. Spreckelmeyer S, Balzer M, Poetzsch S et al (2020) Fully-automated production of [68Ga]Ga-FAPI-46 for clinical application. EJNMMI Radiopharm Chem 5:31. https://doi.org/10.1186/s41181-020-00112-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huang R, Pu Y, Huang S, Yang C et al (2022) FAPI-PET/CT in cancer imaging: a potential novel molecule of the century. Front Oncol 12:854658. https://doi.org/10.3389/fonc.2022.854658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jansen K, Heirbaut L, Verkerk R et al (2014) Extended structure–activity relationship and pharmacokinetic investigation of (4-quinolinoyl) glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J Med Chem 57(7):3053–3074

    Article  CAS  PubMed  Google Scholar 

  7. Loktev A, Lindner T, Burger EM et al (2019) Development of fibroblast activation protein–targeted radiotracers with improved tumor retention. J Nucl Med 60(10):1421–1429. https://doi.org/10.2967/jnumed.118.224469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meyer C, Dahlbom M, Lindner T et al (2020) Biodistribution of 68Ga-FAPI-46 PET imaging in cancer patients. J Nucl Med Off Publ Soc Nucl Med 61:1171–1177. https://doi.org/10.2967/jnumed.119.236786

    Article  CAS  Google Scholar 

  9. Altmann A, Haberkorn U, Siveke J (2021) The latest developments in imaging of fibroblast activation protein. J Nucl Med Off Publ Soc Nucl Med 62:160–167. https://doi.org/10.2967/jnumed.120.244806

    Article  CAS  Google Scholar 

  10. Giesel FL, Kratochwil C, Lindner T et al (2019) 68Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med 60(3):386–392. https://doi.org/10.2967/jnumed.118.215913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lepareur N (2022) Cold Kit Labeling: The Future of 68Ga Radiopharmaceuticals? Front Med 9:812050. https://doi.org/10.3389/fmed.2022.812050

    Article  Google Scholar 

  12. Velikyan I (2015) 68Ga-Based radiopharmaceuticals: production and application relationship. Molecules 20:12913–12943. https://doi.org/10.3390/molecules200712913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nelson BJB, Andersson JD, Wuest F et al (2022) Good practices for 68Ga radiopharmaceutical production. EJNMMI Radiopharm Chem 7:27. https://doi.org/10.1186/s41181-022-00180-1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Satpati D (2021) Recent breakthrough in 68Ga-radiopharmaceuticals cold kits for convenient PET radiopharmacy. Bioconjug Chem 32:430–447. https://doi.org/10.1021/acs.bioconjchem.1c00010

    Article  CAS  PubMed  Google Scholar 

  15. Prince D, Rossouw D, Rubow S (2018) Optimization of a labeling and kit preparation method forGa-68 labeled DOTATATE, using cation exchange resin purifiedga-68 eluates obtained from a tin dioxide 68Ge/68Ga generator. Mol Imag Biol 20:1008–1014. https://doi.org/10.1007/s11307-018-1195-x

    Article  CAS  Google Scholar 

  16. Mukherjee A, Pandey U, Chakravarty R et al (2014) Development of single vial kits for preparation of 68Ga-labelled peptides for PET imaging of neuroendocrine tumours. Mol Imag Biol 16:550–557. https://doi.org/10.1007/s11307-014-0719-2

    Article  Google Scholar 

  17. Satpati D, Shinto A, Kamaleshwaran K et al (2016) Convenient preparation of [68Ga] DKFZ-PSMA-11 using a robust single-vial kit and demonstration of its clinical efficacy. Mol Imag Biol 18:420–427. https://doi.org/10.1007/s11307-016-0943-z

    Article  CAS  Google Scholar 

  18. 1085 guidelines on the endotoxins test - ipc.gov.in. (n.d.). https://ipc.gov.in/images/Draft_New_Chapter_Guidelines_on_Bacterial_Endotoxin.pdf . Accessed 11 Feb 2023

  19. https://www.ipc.gov.in/images/Guidance_Manual_29-01-2020.pdf. Accessed 17 Feb 2023

  20. Herrmann K, Schwaiger M, Lewis JS et al (2020) Radiotheranostics: a roadmap for future development. Lancet Oncol 21:e146–e156. https://doi.org/10.1016/s1470-2045(19)30821-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Da Pieve C, Costa Braga M, Turton DR et al (2022) New fully automated preparation of high apparent molar activity 68Ga-FAPI-46 on a trasis AiO platform. Molecules 27:675. https://doi.org/10.3390/molecules27030675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alfteimi A, Lützen U, Helm A et al (2022) Automated synthesis of [68Ga]Ga-FAPI-46 without pre-purification of the generator eluate on three common synthesis modules and two generator types. EJNMMI Radiopharm Chem 7:20. https://doi.org/10.1186/s41181-022-00172-1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Giesel FL, Adeberg S, Syed M et al (2021) FAPI-74 PET/CT using either 18F-AlF or cold-kit 68Ga labeling: biodistribution, radiation dosimetry, and tumor delineation in lung cancer patients. J Nucl Med 62:201–207. https://doi.org/10.2967/jnumed.120.245084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Chief Executive, Board of Radiation and Isotope Technology for the constant support and encouragement. The support of Head, Radiation Medicine Centre, Bhabha Atomic Research Centre is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhare, N., Mitra, A., Chakraborty, A. et al. Radiochemical synthesis and pre-clinical evaluation of [68Ga]Ga-FAPI-4 formulated using in-house developed FAPI-4 kit. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09476-9

Keywords

Navigation