Skip to main content
Log in

Study of hyperfine interactions in calcium titanate perovskite using TDPAC spectroscopy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Local electronic structure was investigated by observing hyperfine interactions (HFI) in Calcium titanate (CTO) perovskite using time differential perturbed angular correlation (TDPAC) spectroscopy. CTO was synthesized by gel-combustion method and doped with (181Hf/181Ta) TDPAC probe to study chemical environment around probe atom. Study revealed presence of two sites characterized by different quadrupole interaction frequencies, ω1a = 203 (2) and ω1b = 160 (2) Mrad/s, but with similar asymmetry parameters, ηa = 0.47 (0.01) and ηb = 0.47 (0.03). Electric Field Gradient (EFG) calculated from HFI parameters are 3.12 (0.03) and 2.47 (0.03) × 1021 V/m2 for the two sites. Point charge model calculation concluded that the two sites have different EFG and corroborated the variation in EFG between two sites accurately. Plausible reasons for existence of two different HFIs at B-site of CTO perovskite is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhalla AS, Guo R, Roy R (2000) The perovskite structure—a review of its role in ceramic science and technology. Mater Res Innov 4:3–26. https://doi.org/10.1007/s100190000062

    Article  CAS  Google Scholar 

  2. Hanajiri Y, Yokoi H, Matsui T et al (1997) Phase equilibria of CaTi03 doped with Ce, Nd and U. J Nucl Mater 247:285–288. https://doi.org/10.1016/S0022-3115(97)00055-X

    Article  CAS  Google Scholar 

  3. Bhadala F, Suthar L, Roy M, Jha VK (2018) Dielectric and transport properties of CaTiO3. In: AIP Conference Proceedings. p 050028

  4. Kell RC, Greenham AC, Olds GCE (1973) High-permittivity temperature-stable ceramic dielectrics with low microwave loss. J Am Ceram Soc 56:352–354. https://doi.org/10.1111/j.1151-2916.1973.tb12684.x

    Article  CAS  Google Scholar 

  5. Tamayo R, Espinoza-González R, Gracia F et al (2019) As(III) removal from aqueous solution by calcium titanate nanoparticles prepared by the sol gel method. Nanomaterials 9(5):733. https://doi.org/10.3390/nano9050733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Passi M, Pal B (2021) A review on CaTiO3 photocatalyst: activity enhancement methods and photocatalytic applications. Powder Technol 388:274–304. https://doi.org/10.1016/j.powtec.2021.04.056

    Article  CAS  Google Scholar 

  7. Yahya NY, Ngadi N, Jusoh M, Halim NAA (2016) Characterization and parametric study of mesoporous calcium titanate catalyst for transesterification of waste cooking oil into biodiesel. Energy Convers Manag 129:275–283. https://doi.org/10.1016/j.enconman.2016.10.037

    Article  CAS  Google Scholar 

  8. Xie W, Hu W, Zou L et al (2015) Tuning bipolar resistive switching by forming defect dipoles in A-site-deficient perovskite calcium titanate thin films. Appl Phys Express 8:045504. https://doi.org/10.7567/APEX.8.045504

    Article  CAS  Google Scholar 

  9. Krause A, Weber W, Jahn A et al (2011) Evaluation of the electrical and physical properties of thin calcium titanate high-k insulators for capacitor applications. J Vac Sci Technol B, Nanotechnol Microelectron Mater Process Meas Phenom 29:01AC07. https://doi.org/10.1116/1.3521507

    Article  CAS  Google Scholar 

  10. Zacate M, Jaeger H (2011) Perturbed angular correlation spectroscopy—a tool for the study of defects and diffusion at the atomic scale. Defect Diffus Forum 311:3–38. https://doi.org/10.4028/www.scientific.net/DDF.311.3

    Article  CAS  Google Scholar 

  11. Schell J, Kamba S, Kachlik M et al (2019) Thermal annealing effects in polycrystalline EuTiO 3 and Eu 2 Ti 2 O 7. AIP Adv 9:125125. https://doi.org/10.1063/1.5115466

    Article  CAS  Google Scholar 

  12. López-García A, Alonso RE, Falabella M, Echeverria G (2010) The effect of oxygen vacancies in Ca1-xSrxHfO 3. Ferroelectrics 396:37–48. https://doi.org/10.1080/00150191003795130

    Article  CAS  Google Scholar 

  13. De La Presa P, López-García A (1997) Defects in CaHfO3 produced by thermal neutron irradiation. Radiat Eff Defects Solids 140:141–149. https://doi.org/10.1080/10420159708216841

    Article  Google Scholar 

  14. Schell J, Marschick G (2019) TDPAC studies of local defects and phenomena in ferroics and multiferroics. Crystals 9:611. https://doi.org/10.3390/cryst9120611

    Article  CAS  Google Scholar 

  15. Kumar A, Mishra RK, Khader SA et al (2021) Electron beam irradiation induced changes in local structure of simulated waste bearing sodium borosilicate glasses. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 486:85–93. https://doi.org/10.1016/j.nimb.2020.11.007

    Article  CAS  Google Scholar 

  16. Kumar A, Mishra RK, Bhardwaj YK et al (2021) Probing electronic environment in gamma irradiated sodium borosilicate glass and simulated waste glass: a perturbed angular correlation spectroscopy study. J Radioanal Nucl Chem 328:569–576. https://doi.org/10.1007/s10967-021-07686-z

    Article  CAS  Google Scholar 

  17. Kumar A, Sahu M, Deb AC et al (2021) Structural investigation in strontium titanate (SrTiO3) synthesized by gel-combustion method and in-gelation method: a TDPAC and XRD study. J Mater Sci Mater Electron 32:11577–11587. https://doi.org/10.1007/s10854-021-05753-5

    Article  CAS  Google Scholar 

  18. Rodriguez-Carvajal J (2000) FULLPROF: a program for Rietveld refinement and pattern matching analysis. In satellite meeting on powder diffraction of the XV congress of the IUCr. Lab Leon Brillouin Gif sur Yv

  19. Kumar A, Mandal G, Das P, Tomar BS (2017) Hyperfine interaction study of pressure induced phase transformations in Hafnia. J Radioanal Nucl Chem 313:683–687. https://doi.org/10.1007/s10967-017-5351-6

    Article  CAS  Google Scholar 

  20. Chatterjee A, Ramachandran K, Kumar A, Behere A (2013) Linux advanced multiparameter system. Nucl Phys Div BARC http//www.tifr.res.in/~ pell/lamps.html

  21. Lindgren B (1996) Depack software. Hyperfine Interact C:613

    Google Scholar 

  22. Spearing DR (1994) ptchg: A FORTRAN program for point-charge calculations of electric field gradients (EFGs). Comput Geosci 20:615–624. https://doi.org/10.1016/0098-3004(94)90083-3

    Article  Google Scholar 

  23. Okhotnikov K, Charpentier T, Cadars S (2016) Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J Cheminform 8:17. https://doi.org/10.1186/s13321-016-0129-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sebastian KC, Somayajulu DRS, Jaffrey SNA et al (1996) Quadrupole interaction at 181Ta in BaHfO3. Hyperfine Interact 99:347–351. https://doi.org/10.1007/BF02274939

    Article  CAS  Google Scholar 

  25. López Garciá AR, de la Presa P, Rodríguez AM (1991) Temperature dependence of the hyperfine interaction in the cubic phase of BaHfO 3. Phys Rev B 44:9708–9710. https://doi.org/10.1103/PhysRevB.44.9708

    Article  Google Scholar 

  26. Lopez-Garcia A, de la Presa P, Rodriguez AM et al (1993) Radiation damage produced in BaHfO3 irradiated with thermal and fast neutrons. Phys Rev B 47:84–87. https://doi.org/10.1103/PhysRevB.47.84

    Article  CAS  Google Scholar 

  27. De La Presa P, García AL (1998) PAC investigation on AHfO3 with a = Ca, Sr and Ba. J Korean Phys Soc 32:1–3

    Google Scholar 

  28. da Andrade PR, Forker M, Rogers JD, Kunzler JV (1972) Nuclear-quadrupole interactions in perovskite-type compounds of Hf 181 studied by the perturbed-angular-correlation technique. Phys Rev B 6:2560–2565. https://doi.org/10.1103/PhysRevB.6.2560

    Article  CAS  Google Scholar 

  29. da Silva RA, Saxena RN, Carbonari AW, Cabrera-Pasca GA (2010) Investigation of hyperfine interactions in GdCrO3 perovskite oxide using PAC spectroscopy. Hyperfine Interact 197:53–58. https://doi.org/10.1007/s10751-010-0182-7

    Article  CAS  Google Scholar 

  30. López-García A, Alonso R, de La Presa P, Ayala A (1999) Hyperfine interactions in cubic perovskites. Hyperfine Interact 120:97–106. https://doi.org/10.1023/A:1017078012946

    Article  Google Scholar 

  31. Olzon-Dionysio M, Souza SD, Ayala AP et al (2001) Concentration dependence of the electric field gradient in PbZr1−xTixO3 ceramics. Hyperfine Interact 136/137:523–528. https://doi.org/10.1023/A:1020570707357

    Article  CAS  Google Scholar 

  32. Alonso RE, García AL, Ayala A, Presa P de la (1998) Temperature dependence of the nuclear quadrupole interaction at Zr-Ti sites in in the Zr-rich rhombohedral and cubic phases. J Phys Condens Matter 10:2139–2153. https://doi.org/10.1088/0953-8984/10/9/017

    Article  CAS  Google Scholar 

  33. Uhrmacher M, Krishnamurthy VV, Lieb K-P et al (1998) Perturbed angular correlation studies of electric field gradients at 111 Cd in the perovskites PbZrO3 and BaTiO3. Zeitschrift für Phys Chemie 206:249–264. https://doi.org/10.1524/zpch.1998.206.Part_1_2.249

    Article  CAS  Google Scholar 

  34. Schafer G, Herzog P, Wolbeck B (1972) Static electric quadrupole interaction of Ta- and Hf-ions in barium and lead titanate. Zeitschrift fur Phys 257:336–352. https://doi.org/10.1007/BF01392991

    Article  Google Scholar 

  35. Sternheimer RM (1986) Shielding and antishielding of nuclear quadrupole moments. Zeitschrift fur Naturforsch - Sect A J Phys Sci 41:24–36. https://doi.org/10.1515/zna-1986-1-207

    Article  Google Scholar 

  36. Gupta RP, Sen SK (1973) Sternheimer shielding-antishielding; rare-earth Ions. Phys Rev A 7:850–858. https://doi.org/10.1103/PhysRevA.7.850

    Article  CAS  Google Scholar 

  37. Gupta RP, Sen SK (1973) Sternheimer shielding-antishielding. II. Phys Rev A 8:1169–1172. https://doi.org/10.1103/PhysRevA.8.1169

    Article  CAS  Google Scholar 

  38. Sen KD, Narasimhan PT (1978) Nuclear hexadecapole antishielding factors: tripositive lanthanide and tetrapositive actinide ions. Phys Rev A 18:2450–2452. https://doi.org/10.1103/PhysRevA.18.2450

    Article  CAS  Google Scholar 

  39. Sen KD, Weiss A, Schmidt PC (1986) Electric-field-gradient sternheimer function for closed shell ions. Hyperfine Interact 30:253–264. https://doi.org/10.1007/BF02396918

    Article  CAS  Google Scholar 

  40. Burns G, Wikner EG (1961) Antishielding and contracted wave functions. Phys Rev 121:155–158. https://doi.org/10.1103/PhysRev.121.155

    Article  CAS  Google Scholar 

  41. Sen KD, Narasimhan PT (1977) Sternheimer antishielding factors for core electrons in metals: comparison with free-ion results. Phys Rev A 16:1786–1788. https://doi.org/10.1103/PhysRevA.16.1786

    Article  CAS  Google Scholar 

  42. Attili R, Saxena R, Carbonari A et al (1998) Delafossite oxides studied by perturbed-angular-correlation spectroscopy using a probe. Phys Rev B - Condens Matter Mater Phys 58:2563–2569. https://doi.org/10.1103/PhysRevB.58.2563

    Article  CAS  Google Scholar 

  43. Dogra R, Junqueira AC, Saxena RN et al (2001) Hyperfine interaction measurements in (formula presented) and (formula presented) perovskites using perturbed angular correlation spectroscopy. Phys Rev B - Condens Matter Mater Phys 63:1–9. https://doi.org/10.1103/PhysRevB.63.224104

    Article  CAS  Google Scholar 

  44. Beri AC, Lee T, Das TP, Sternheimer RM (1983) First-principles theory of antishielding effects in the nuclear quadrupole interaction in ionic crystals: application to Fe-57m in Fe2O3. Phys Rev B 28:2335–2351. https://doi.org/10.1103/PhysRevB.28.2335

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr Rahul Tripathi (Head, Nuclear Chemistry Section, Radiochemistry Division) for his constant support during the work. Authors also thank Dr. Bal Govind Vats (SO/E, Fuel Chemistry Division) for XRD acquisition.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

AK: visualization, investigation, draft-writing and editing. MS: resources, investigation. BST: supervision, draft-proofing.

Corresponding author

Correspondence to Ashwani Kumar.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Sahu, M. & Tomar, B.S. Study of hyperfine interactions in calcium titanate perovskite using TDPAC spectroscopy. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09441-6

Keywords

Navigation