Skip to main content
Log in

125I labelling of C-reactive protein for the development of Radioimmunoassay (RIA)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radioimmunoassay (RIA) for C-reactive protein (CRP) is a clinical tool to quantify CRP, a cardiovascular diseases (CVDs) marker, in human serum. Development of the Radioimmunoassay includes radioiodination of CRP with 125I radioisotope, where radioiodination is conducted following the Chloramine-T method. The present study standardizes the radiolabeling procedure and key reagent concentrations like chloramine-T (oxidizing reagent), sodium metabisulfite, and potassium iodide. The outcome of the standardized radioiodination includes a reaction time of 60 s, iodination analytical parameters like % Radiochemical purity was ~ 97% with specific activity ~ 17 µCi/µg, and the tracer was stable for the 60 days. The optimized radioiodination method is simple, reproducible, and has high tracer stability with high immunoreactivity to develop an RIA procedure to quantify CRP in human serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tillett WS, Francis T (1930) Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J Exp Med 52(4):561–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Volanakis JE (2001) Human C-reactive protein: expression, structure, and function. Mol Immunol 38(2–3):189–197

    Article  CAS  PubMed  Google Scholar 

  3. Pathak A, Agrawal A (2019) Evolution of C-reactive protein. Front Immunol 10(943):1–12

    CAS  Google Scholar 

  4. Mantovani A, Garlanda C, Doni A, Bottazzi B (2008) Pentraxins in innate immunity: from C-reactive protein to the long pentraxin PTX. J Clin Immunol 28(1):1–13

    Article  CAS  PubMed  Google Scholar 

  5. Ridker PM, Silvertown JD (2008) Inflammation, C-reactive protein, and atherothrombosis. J Periodontol 79(8):1544–1551

    Article  CAS  PubMed  Google Scholar 

  6. Hirschfield GM, Pepys MB (2003) C-reactive protein and cardiovascular disease: new insights from an old molecule. QJM Int J Med 96(11):793–807

    Article  CAS  Google Scholar 

  7. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111(12):1805–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sproston NR, Ashworth JJ (2018) Role of C-reactive protein at sites of inflammation and infection. Front Immunol 9:754

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ridker PM, MacFadyen JG, Glynn RJ, Bradwin G, Hasan AA, Rifai N (2020) Comparison of interleukin-6, C-reactive protein, and low-density lipoprotein cholesterol as biomarkers of residual risk in contemporary practice: secondary analyses from the cardiovascular inflammation reduction trial. Eur Heart J 41(31):2952–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ridker PM (2016) From C-reactive protein to interleukin-6 to interleukin-1: moving upstream to identify novel targets for atheroprotection. Circ Res 118:145–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ridker PM (2018) Clinician’s guide to reducing inflammation to reduce atherothrombotic risk: JACC review topic of the week. J Am Coll Cardiol 72:3320–3331

    Article  PubMed  Google Scholar 

  12. Ellington AA, Kullo IJ, Bailey KR, Klee GG (2010) Antibody-based protein multiplex platforms: technical and operational challenges. Clin Chem 56(2):186–193

    Article  CAS  PubMed  Google Scholar 

  13. Borrebaeck CA (2000) Antibodies in diagnostics—from immunoassays to protein chips. Immunol 21:379–382

    CAS  Google Scholar 

  14. Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. J Clin Investig 39(7):1157–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Youfeng H, Coenen HH, Petzold G, Stöcklin G (1982) A comparative study of radioiodination of simple aromatic compounds via N-halosuccinimides and chloramine-T in TFAA. J Label Compd Radiopharm 19(7):807–819

    Article  CAS  Google Scholar 

  16. Bhalla HL, Vavia PR, Samuel G, Sivaprasad N (1997) Development of radioimmunoassay: I. Preparation of radiolabeled tracers theophylline. J Radioanal Nucl Chem 220:73–76

    Article  CAS  Google Scholar 

  17. Hunter R (1970) Standardization of the chloramine-T method of protein iodination. Proc Soc Exp Biol Med 133(3):989–992

    Article  CAS  PubMed  Google Scholar 

  18. Bailey GS (2002) The chloramine T method for radiolabeling protein. The Protein Protocols Handbook. Springer Protocols Handbooks, Humana Press, pp 963–965

    Google Scholar 

  19. McConahey PJ, Dixon FJ (1966) A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Immunol 29(2):185–189

    Article  CAS  Google Scholar 

  20. Hunter WM, Greenwood F (1962) Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature 194:495–496

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Pimpalkhute M, Majali M, Mani R (1986) Radioimmunoassay of human follicle stimulating hormone/HFSH. J Radioanal Nucl Chem 103(2):105–116

    Article  CAS  Google Scholar 

  22. Kaddar N, Bendridi N, Harthé C, de Ravel MR, Bienvenu AL, Cuilleron CY, Mappus E, Pugeat M, Déchaud H (2009) Development of a radioimmunoassay for the measurement of Bisphenol A in biological samples. Anal Chim Acta 645(1–2):1–4

    Article  CAS  PubMed  Google Scholar 

  23. Tai HH, Chey WY (1978) Development of radioimmunoassay for motilin. Anal Biochem 87(2):350–358

    Article  CAS  PubMed  Google Scholar 

  24. Tai HH, Yuan B (1978) Development of radioimmunoassay for thromboxane B2. Anal Biochem 87(2):343–349

    Article  CAS  PubMed  Google Scholar 

  25. Shine B, De Beer FC, Pepys MB (1981) Solid phase radioimmunoassays for human C-reactive protein. Clin Chim Acta 117(1):13–23

    Article  CAS  PubMed  Google Scholar 

  26. Rasmi RR, Shenoy KB, Kadwad VB, Sarnaik J, Somashekarappa HM (2015) Application of novel magnetizable cellulose particles in the development of immunoradiometric assay for C-peptide. J Radioanal Nucl Chem 304:1115–1122

    Article  CAS  Google Scholar 

  27. Rasmi RR, Kadwad VB, Sarnaik J, Shenoy KB, Somashekarappa HM (2021) Development of radioimmunoassay for estimation of C-peptide in human serum. J Radioanal Nucl Chem 327:923–928

    Article  CAS  Google Scholar 

  28. Manupriya BR, Paradkar S, Ghodke TS, Kadwad V, Karunakara N, Shenoy KB (2023) Development of a magnetizable cellulose particle-based immunoradiometric assay for quantification of C-peptide in rat serum. J Radioanal Nucl Chem 332(3):517–525

    Article  CAS  Google Scholar 

  29. Greenwood FC, Hunter WM, Glover JS (1963) Radioiodination of proteins with chloramine T. Biochem J 89:114–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gnanasekar R, Sarnaik JS, Joseph NC, Kadwad VB, Mathur A (2021) Development of two-step radioimmunoassay (RIA) for the measurement of free triiodothyronine in human serum based on antibody coated tubes. J Radioanal Nucl Chem 329(1):71–76

    Article  CAS  Google Scholar 

  31. Borque L, Bellod L, Rus A, Seco ML, Galisteo-Gonzalez F (2000) Development and validation of an automated and ultrasensitive immunoturbidimetric assay for C-reactive protein. Clin Chem 46(11):1839–1842

    Article  CAS  PubMed  Google Scholar 

  32. Bouzidi N, Messaoud MB, Maatouk F, Gamra H, Ferchichi S (2020) Relationship between high sensitivity C-reactive protein and angiographic severity of coronary artery disease. J Geriatr Cardiol 17(5):256–263

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang W, Ren D, Wang CS, Li T, Yao HC (2019) High sensitivity C-reactive protein to prealbumin ratio measurement as a marker of the prognosis in acute coronary syndrome. Sci Rep 9(1):11583

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  34. Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, Walker M (2012) C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 367(14):1310–1320

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to BRNS, DAE, Government of India for the financial support of this work. The authors are grateful for the continuous support from Rani Gnanasekar and Shripriya Purohit. The authors acknowledge the support of the Centre for Application of Radioisotopes & Radiation Technology (CARRT), Mangalore University, Department of Applied Zoology, Mangalore University, and the Board for Radiation and Isotope Technology (BRIT), Vashi Complex, Vashi, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bhasker Shenoy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodke, T.S., Manupriya, B.R., Kadwad, V. et al. 125I labelling of C-reactive protein for the development of Radioimmunoassay (RIA). J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09425-6

Keywords

Navigation