Skip to main content
Log in

A facile synthesis of polyacrylic acid–ammonium phosphomolybdate microspheres for the highly selective removal of cesium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel polyacrylic acid–ammonium phosphomolybdate (PAA–AMP) adsorbent capable of highly selective adsorption of Cs+ in robust acid solutions was developed. The effects of adsorbent dosage, pH, contact time, temperature, and competing ions on the Cs+ removal performance were investigated. The adsorbent rapid (30 min) selective adsorption of Cs+ in a wide pH (pH = 1–12) range, with little effect of competing ions on the adsorption, and a maximum adsorption capacity of 66.71 mg g−1. The adsorption data fitted well with pseudo-second-order kinetics and the Langmuir isotherm model, and adsorption mechanism is ion exchange between NH4+ and Cs+.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang S, Luan Z, Li W, Cheng X, Ye Z, Hu B (2024) Two-dimensional sp2 carbon-conjugated COFs electrode for efficient electro-adsorption of uranium. Sep Purif Technol 330:125378. https://doi.org/10.1016/j.seppur.2023.125378

    Article  CAS  Google Scholar 

  2. Kavitha E, Prabhakar S (2022) Review and assessment on the separation of cesium and strontium from the aqueous stream. Desalin Water Treat 251:43–56. https://doi.org/10.5004/dwt.2022.28113

    Article  CAS  Google Scholar 

  3. Yang ZC, Guo BX, Hu ZY, Cui JH, Cui JG, Li LN, Hu C, Zhao YB (2023) Highly efficient removal of Cs+ from water by an ionic lamellar carbon nitride framework. J Mater Chem A 11:11859–11865. https://doi.org/10.1039/d3ta00811h

    Article  CAS  Google Scholar 

  4. Wang J, Zhuang S (2019) Removal of cesium ions from aqueous solutions using various separation technologies. Rev Environ Sci Bio-Technol 18:231–269. https://doi.org/10.1007/s11157-019-09499-9

    Article  CAS  Google Scholar 

  5. Wang J, Jing S, Chen J (2016) Demonstration of a crown ether process for partitioning strontium from high level liquid waste (HLLW). Radiochim Acta 104:107–115. https://doi.org/10.1515/ract-2015-2454

    Article  CAS  Google Scholar 

  6. Zhiwu L, Li X, Huang P, Hu H, Li Z, Zhang Q (2019) Mechanochemical activation of antigorite to provide active magnesium for precipitating cesium from the existences of potassium and sodium. Appl Clay Sci 168:223–229. https://doi.org/10.1016/j.clay.2018.11.015

    Article  CAS  Google Scholar 

  7. Li W-A, Peng Y-C, Ma W, Huang X-Y, Feng M-L (2022) Rapid and selective removal of Cs+ and Sr2+ ions by two zeolite–type sulfides via ion exchange method. Chem Eng J 442:136377. https://doi.org/10.1016/j.cej.2022.136377

    Article  CAS  Google Scholar 

  8. Qin J, Yan L, Han S, Yang X, Guo Y, Li L, Deng T (2023) Tannic acid-assisted prussian blue anchoring on membranes for rapid and recyclable removal of cesium. J Water Process Eng 52:103565. https://doi.org/10.1016/j.jwpe.2023.103565

    Article  Google Scholar 

  9. Gao B, Yu H-R, Zhang H-Y, Liang T, Cheng C-J (2022) High-density immobilization of potassium copper hexacyanoferrate in poly(acrylic acid)/laponite hydrogel for enhanced Cs+ removal. J Environ Chem Eng 10:107979. https://doi.org/10.1016/j.jece.2022.107979

    Article  CAS  Google Scholar 

  10. Yang J, Wang M, Zhang L, Lu Y, Di B, Shi K, Hou X (2023) Investigation on the thermal stability of cesium in soil pretreatment and its separation using AMP-PAN resin. J Radioanal Nucl Chem 332:877–885. https://doi.org/10.1007/s10967-023-08775-x

    Article  CAS  Google Scholar 

  11. Zhang H, Li CM, Chen XJ, Fu H, Chen YL, Ning SY, Fujita T, Wei YZ, Wang XP (2022) Layered ammonium vanadate nanobelt as efficient adsorbents for removal of Sr2+ and Cs+ from contaminated water. J Colloid Interface Sci 615:110–123. https://doi.org/10.1016/j.jcis.2022.01.164

    Article  CAS  PubMed  Google Scholar 

  12. El-Zahhar AA, Idris AM (2022) Mercury(II) decontamination using a newly synthesized poly(acrylonitrile–acrylic acid)/ammonium molybdophosphate composite exchanger. Toxin Rev 41:25–37. https://doi.org/10.1080/15569543.2020.1824191

    Article  CAS  Google Scholar 

  13. Sang H, Mao C, Ming F, Xu L, Wei Y, Wu Y (2022) Selective separation and immobilization process of 137Cs from high-level liquid waste based on silicon-based heteropoly salt and natural minerals. Chem Eng J 449:137842. https://doi.org/10.1016/j.cej.2022.137842

    Article  CAS  Google Scholar 

  14. Wang Y, Li F, Mao J, Wang X, Shao Y, Yuan J (2023) Magnetic copper hexacyanoferrate core–shell nanoparticles for effective cesium removal from aqueous solutions. Environ Sci: Water Res Technol 9:1115–1123. https://doi.org/10.1039/D2EW00712F

    Article  CAS  Google Scholar 

  15. Chen S, Hu J, Shi J, Wang M, Guo Y, Li M, Duo J, Deng T (2019) Composite hydrogel particles encapsulated ammonium molybdophosphate for efficiently cesium selective removal and enrichment from wastewater. J Hazardous Mater 371:694–704. https://doi.org/10.1016/j.jhazmat.2019.03.047

    Article  CAS  Google Scholar 

  16. El-Zahhar AA, Idris AM (2022) Mercury(II) decontamination using a newly synthesized poly(acrylonitrile-acrylic acid)/ammonium molybdophosphate composite exchanger. Toxin Rev 41:25–37. https://doi.org/10.1080/15569543.2020.1824191

    Article  CAS  Google Scholar 

  17. Mohammadbagheri Z, Rahmati A, Hoshyarmanesh P (2021) Synthesis of a novel superabsorbent with slow-release urea fertilizer using modified cellulose as a grafting agent and flexible copolymer. Int J Biol Macromol 182:1893–1905. https://doi.org/10.1016/j.ijbiomac.2021.05.191

    Article  CAS  PubMed  Google Scholar 

  18. Baloch H, Usman M, Rizwan S, Hanif A (2019) Properties enhancement of super absorbent polymer (SAP) incorporated self-compacting cement pastes modified by nano silica (NS) addition. Constr Build Mater 203:18–26. https://doi.org/10.1016/j.conbuildmat.2019.01.096

    Article  CAS  Google Scholar 

  19. Chen Y, Wang D, Mensaha A, Wang Q, Cai Y, Wei Q (2022) Ultrafast gelation of multifunctional hydrogel/composite based on self-catalytic Fe3+/Tannic acid-cellulose nanofibers. J Colloid Interf Sci 606:1457–1468. https://doi.org/10.1016/j.jcis.2021.08.104

    Article  CAS  Google Scholar 

  20. Sethy PK, Mohapatra P, Patra S, Bharatiya D, Swain SK (2021) Antimicrobial and barrier properties of polyacrylic acid/GO hybrid nanocomposites for packaging application. Nano-Struct Nano-Objects 26:100747. https://doi.org/10.1016/j.nanoso.2021.100747

    Article  CAS  Google Scholar 

  21. Zhu H, Zhong X (2023) Preparation of ammonium 12-molybdophosphate loaded mesoporous silica for adsorption of cesium ion from aqueous solution. J Radioanal Nucl Chem 332:1901–1907. https://doi.org/10.1007/s10967-023-08860-1

    Article  CAS  Google Scholar 

  22. Xian Q, He X, Wang E, Bai Z, Zhao D, Dan H, Ding Y, Zhu W (2021) Preparation of mesoporous MnO2/SBA-15 and its cesium ion adsorption properties. J Radioanal Nucl Chem 327:505–512. https://doi.org/10.1007/s10967-020-07522-w

    Article  CAS  Google Scholar 

  23. Dermeche L, Thouvenot R, Hocine S, Rabia C (2009) Preparation and characterization of mixed ammonium salts of Keggin phosphomolybdate. Inorg Chim Acta 362:3896–3900. https://doi.org/10.1016/j.ica.2009.04.049

    Article  CAS  Google Scholar 

  24. Zakutevskyy O, Sydorchuk V, Kovtun M, Khalameida S, Skwarek E (2023) Sorption of some cations on ammonium molybdophosphate embedded into structure of silica and titania. Res Chem Intermed 49:2233–2255. https://doi.org/10.1007/s11164-022-04936-x

    Article  CAS  Google Scholar 

  25. Liu Q, Ge H, Liu C, Zhang N, Guo Y, Deng T (2023) Highly selective and easily regenerated novel porous polyacrylonitrile-ammonium phosphomolybdate beads for cesium removal from geothermal water. J Water Process Eng 51:103339. https://doi.org/10.1016/j.jwpe.2022.103339

    Article  Google Scholar 

  26. Gao C, He J, Han S, Guo Y, Wang S, Deng T (2023) A highly efficient metal ferrocyanide adsorbent based on zinc phytate for cesium removal. Appl Surf Sci 614:156231. https://doi.org/10.1016/j.apsusc.2022.156231

    Article  CAS  Google Scholar 

  27. Awual MR, Yaita T, Kobayashi T, Shiwaku H, Suzuki S (2020) Improving cesium removal to clean-up the contaminated water using modified conjugate material. J Environ Chem Eng 8:103684. https://doi.org/10.1016/j.jece.2020.103684

    Article  CAS  Google Scholar 

  28. Agual-Lucas J, Mera-Holguin C, Zambrano-Intriago LA, Ruiz-Reyes E, Gomez-Salcedo Y, Baquerizo-Crespo RJ, Rodriguez-Diaz JM (2023) Kinetics and equilibrium of the adsorption process of dimethoate with corn stalk. Bioremediat J 27:55–65. https://doi.org/10.1080/10889868.2021.1988895

    Article  CAS  Google Scholar 

  29. Wang Y, Li K, Fang D, Ye X, Liu H, Tan X, Li Q, Li J, Wu Z (2022) Ammonium molybdophosphate/metal-organic framework composite as an effective adsorbent for capture of Rb+ and Cs+ from aqueous solution. J Solid State Chem 306:122767. https://doi.org/10.1016/j.jssc.2021.122767

    Article  CAS  Google Scholar 

  30. Ma L, Huang Y, Zhao K, Deng H, Qiang T, Yan M (2021) Removal of uranium from acidic aqueous solution by natural fluorapatite. J Environ Chem Eng 9:106600. https://doi.org/10.1016/j.jece.2021.106600

    Article  CAS  Google Scholar 

  31. Mazrouaa A, Mansour N, Youssif M, Shenashen M, Awual M (2019) Nano–composite multi-wall carbon nanotubes using poly (p-phenylene terephthalamide) for enhanced electric conductivity. J Environ Chem Eng 7:103002. https://doi.org/10.1016/j.jece.2019.103002

    Article  CAS  Google Scholar 

  32. Largitte L, Pasquier R (2016) A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des 109:495–504. https://doi.org/10.1016/j.cherd.2016.02.006

    Article  CAS  Google Scholar 

  33. Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazardous Mater 390:122156. https://doi.org/10.1016/j.jhazmat.2020.122156

    Article  CAS  Google Scholar 

  34. Mohammadi S, Faghihian H (2019) Elimination of Cs+ from aquatic systems by an adsorbent prepared by immobilization of potassium copper hexacyanoferrate on the SBA-15 surface: kinetic, thermodynamic, and isotherm studies. Environ Sci Pollut Res 26:12055–12070. https://doi.org/10.1007/s11356-019-04623-2

    Article  CAS  Google Scholar 

  35. Pérez-Marín AB, Zapata VM, Ortuño JF, Aguilar M, Sáez J, Lloréns M (2007) Removal of cadmium from aqueous solutions by adsorption onto orange waste. J Hazardous Mater 139:122–131. https://doi.org/10.1016/j.jhazmat.2006.06.008

    Article  CAS  Google Scholar 

  36. Loukidou MX, Zouboulis AI, Karapantsios TD, Matis KA (2004) Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloids Surf A: Physicochem Eng Aspects 242:93–104. https://doi.org/10.1016/j.colsurfa.2004.03.030

    Article  CAS  Google Scholar 

  37. Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742. https://doi.org/10.1016/S0043-1354(99)00232-8

    Article  CAS  Google Scholar 

  38. Tang J-H, Jin J-C, Li W-A, Zeng X, Ma W, Li J-L, Lv T-T, Peng Y-C, Feng M-L, Huang X-Y (2022) Highly selective cesium(I) capture under acidic conditions by a layered sulfide. Nat Commun 13:658. https://doi.org/10.1038/s41467-022-28217-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu S, Zu J, Han G, Pan X, Xue Y, Diao J, Tang Q, Jin M (2024) Ammonium phosphomolybdate-modified UiO-66 as an efficient adsorbent for the selective removal of 137Cs from radioactive wastewater. Sep Purif Technol 329:125073. https://doi.org/10.1016/j.seppur.2023.125073

    Article  CAS  Google Scholar 

  40. Sun X, Wang Y, Zhang H, Shen Y, Shi Q, Chen H, Sun J, Zhang Z (2022) Fabrication and performance of the ammonium molybdophosphate/polysulfone mixed matrix membranes for rubidium adsorption in aqueous solution. J Appl Polym Sci 139:51798. https://doi.org/10.1002/app.51798

    Article  CAS  Google Scholar 

  41. Zhou X, Zhou X (2014) The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation. Chem Eng Commun 201:1459–1467. https://doi.org/10.1080/00986445.2013.818541

    Article  CAS  Google Scholar 

  42. Polley K, Bera J (2022) Adsorptive removal of methyl blue dye through magnetically retrievable BaFe12O19-activated charcoal-chitosan composite powder: kinetics, isotherms and thermodynamics studies. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2128790

    Article  Google Scholar 

  43. Olatunji MA, Khandaker MU, Mahmud HNME, Amin YM (2015) Influence of adsorption parameters on cesium uptake from aqueous solutions- a brief review. RSC Adv 5:71658–71683. https://doi.org/10.1039/C5RA10598F

    Article  CAS  Google Scholar 

  44. Khandaker S, Chowdhury MF, Awual MR, Islam A, Kuba T (2021) Efficient cesium encapsulation from contaminated water by cellulosic biomass based activated wood charcoal. Chemosphere 262:127801. https://doi.org/10.1016/j.chemosphere.2020.127801

    Article  CAS  PubMed  Google Scholar 

  45. Wei H, Xi Q, Xa C, Daying G, Ding F, Yang Z, Wang S, Li J, Huang S (2018) Molybdenum carbide nanoparticles coated into the graphene wrapping N-doped porous carbon microspheres for highly efficient electrocatalytic hydrogen evolution both in acidic and alkaline media. Adv Sci 5:1700733. https://doi.org/10.1002/advs.201700733

    Article  CAS  Google Scholar 

  46. Tan Z, Dong L, Huang Z, Du L, Wang X (2016) A theoretical study on the selective adsorption of NH4+ and Cs+ on the phosphomolybdate ion. Colloids Surf A: Physicochem Eng Aspects 502:74–80. https://doi.org/10.1016/j.colsurfa.2016.05.019

    Article  CAS  Google Scholar 

  47. Wu Y, Zhang X-X, Wei Y-Z, Mimura H (2017) Development of adsorption and solidification process for decontamination of Cs-contaminated radioactive water in Fukushima through silica–based AMP hybrid adsorbent. Sep Purif Technol 181:76–84. https://doi.org/10.1016/j.seppur.2017.03.019

    Article  CAS  Google Scholar 

  48. Mhatre A, Agarwal C, Kumar S, Patra S, Tripathi R (2022) Selective and fast separation of cesium ions by in situ synthesized ammonium molybdophosphate-like moieties in a polymer gel. ACS Appl Polym Mater 4:7564–7574. https://doi.org/10.1021/acsapm.2c01240

    Article  CAS  Google Scholar 

  49. Saha S, Singhal R, Basu H, Pimple M (2016) Ammonium molybdate phosphate functionalized silicon dioxide impregnated in calcium alginate for highly efficient removal of 137Cs from aquatic bodies. RSC Adv 6:95620–95627. https://doi.org/10.1039/C6RA20283G

    Article  CAS  Google Scholar 

  50. Sun C, Zhang F, Wang X, Cheng F (2015) Facile preparation of ammonium Molybdophosphate/Al-MCM-41 composite material from natural clay and its use in cesium ion adsorption. Eur J Inorg Chem 2015:2125–2131. https://doi.org/10.1002/ejic.201500114

    Article  CAS  Google Scholar 

  51. Park Y, Shin WS, Choi S-J (2013) Ammonium salt of heteropoly acid immobilized on mesoporous silica (SBA-15): an efficient ion exchanger for cesium ion. Chem Eng J 220:204–213. https://doi.org/10.1016/j.cej.2013.01.027

    Article  CAS  Google Scholar 

  52. Fu C, Tan Z, Cheng J, Xie J, Dai X, Du Y, Zhu S, Wang S, Yan M (2023) Effective removal of cesium by ammonium molybdophosphate–polyethylene glycol magnetic nanoparticles. J Environ Chem Eng 11:110544. https://doi.org/10.1016/j.jece.2023.110544

    Article  CAS  Google Scholar 

Download references

Funding

This research was Supported by the Natural Science Foundation of Sichuan Province, China (No. 2022NSFSC1228, 2022JDTD0017); and CAEA Innovation Center for Geological Disposal of High-Level Radioactive Waste (No. CXJJ21102209); and Doctoral Foundation of Southwest University of Science and Technology (Grant No. 23zx7111).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. CF: Conceptualization, Investigation, Formal analysis, Methodology, Writing—original draft. XW: Writing—review & editing, Validation. JL: Formal analysis, Validation. JC: Investigation, Formal analysis. SZ: Supervision, Writing—review & editing. MY: Supervision, Resources, Conceptualization, Project administration.

Corresponding authors

Correspondence to Shan Zhu or Minhao Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Wei, X., Lian, J. et al. A facile synthesis of polyacrylic acid–ammonium phosphomolybdate microspheres for the highly selective removal of cesium. J Radioanal Nucl Chem 333, 2207–2220 (2024). https://doi.org/10.1007/s10967-024-09416-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09416-7

Keywords

Navigation