Skip to main content
Log in

Effective removal of cesium ions by using PAN/PANI blend nanofibers prepared by electrospinning method

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, polyacrylonitrile/polyaniline (PAN/PANI) blend nanofibers were prepared by the electrospinning method, and their performance was evaluated as an effective cesium ions adsorbent. The adsorption behavior of cesium ions onto the synthesized nanofibers was explored as a function of pH, contact time, temperature, and initial adsorbate concentration. The isotherm results revealed that the Freundlich model is the best-fit isotherm for cesium adsorption. The adsorption kinetics could be modeled by a pseudo-second-order kinetic model. The thermodynamic parameters imply that the sorption process is spontaneous and exothermic. The maximum uptake of Cesium ions by PAN/PANI nanofibers was 80 mg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kwon S, Kim Y, Roh Y (2021) Effective cesium removal from Cs-containing water using chemically activated opaline mudstone mainly composed of opal-cristobalite/tridymite (opal-CT). Sci Rep 11:15362. https://doi.org/10.1038/s41598-021-94832-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang H, Kim YK, Hunter TN, Brown AP, Lee JW, Harbottle D (2017) Organically modified clay with potassium copper hexacyanoferrate for enhanced Cs+ adsorption capacity and selective recovery by flotation. J Mater Chem A 5:15130–15143. https://doi.org/10.1039/C7TA03873A

    Article  CAS  Google Scholar 

  3. Saberi R, Sadjadi S, Ammari Allahyari S, Charkhi A (2021) Poly(ε-caprolactone) electrospun nanofibers decorated with copper hexacyanoferrate as an ion exchanger for effective cesium ion removal. Sep Sci Technol. https://doi.org/10.1080/01496395.2021.1955268

    Article  Google Scholar 

  4. Zhang H, Zhu M, Du X, Feng S, Miyamoto N, Kano N (2021) Removal of cesium from radioactive waste liquids using geomaterials. Appl Sci 11:8407. https://doi.org/10.3390/app11188407

    Article  CAS  Google Scholar 

  5. Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172:416–422. https://doi.org/10.1016/j.jhazmat.2009.07.033

    Article  CAS  PubMed  Google Scholar 

  6. Mertz JL, Fard ZH, Malliakas CD, Manos MJ, Kanatzidis MG (2013) Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3–xS6 (x = 0.5–1) (KMS-2) relevant to nuclear waste remediation. Chem Mater 25:2116–2127. https://doi.org/10.1021/cm400699r

    Article  CAS  Google Scholar 

  7. Ding N, Kanatzidis MG (2010) Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide. Nat Chem 2:187–191. https://doi.org/10.1038/nchem.519

    Article  CAS  PubMed  Google Scholar 

  8. Ma B, Oh S, Shin WS, Choi SJ (2011) Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination 276:336–346. https://doi.org/10.1016/j.desal.2011.03.072

    Article  CAS  Google Scholar 

  9. Datta SJ, Moon WK, Choi DY, Hwang IC, Yoon KB (2014) A novel vanadosilicate with Hexadeca-coordinated Cs+ ions as a highly effective Cs+ remover. Angew Chem Int Ed 53:7203–7208. https://doi.org/10.1002/anie.201402778

    Article  CAS  Google Scholar 

  10. Gu P, Zhang S, Li X, Wang X, Wen T, Jehan R, Alsaedi A, Hayat T, Wang X (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505. https://doi.org/10.1016/j.envpol.2018.04.136

    Article  CAS  PubMed  Google Scholar 

  11. Zhao G, Huang X, Tang Z, Huang Q, Niu F, Wang X (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem 9:3562–3582. https://doi.org/10.1039/C8PY00484F

    Article  CAS  Google Scholar 

  12. Kong Y, Wei J, Wang Z, Sun T, Yao C, Chen Z (2011) Heavy metals removal from solution by polyaniline/palygorskite composite. J Appl Polym Sci 122:2054–2059. https://doi.org/10.1002/app.34195

    Article  CAS  Google Scholar 

  13. Mohammad N, Atassi Y (2021) Enhancement of removal efficiency of heavy metal ions by polyaniline deposition on electrospun polyacrylonitrile membranes. Water Sci Eng 14:129–138. https://doi.org/10.1016/j.wse.2021.06.004

    Article  Google Scholar 

  14. Wang J, Deng B, Chen H, Wang X, Zheng J (2009) Removal of aqueous Hg(II) by polyaniline: sorption characteristics and mechanisms. Environ Sci Technol 43:5223–5228. https://doi.org/10.1021/es803710k

    Article  CAS  PubMed  Google Scholar 

  15. Li R, Liu L, Yang F (2013) Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(II). Chem Eng J 229:460–468. https://doi.org/10.1016/j.cej.2013.05.089

    Article  CAS  Google Scholar 

  16. Zhang S, Zeng M, Xu W, Li J, Li J, Xu J, Wang X (2013) Polyaniline nanorods dotted on graphene oxide nanosheets as a novel super adsorbent for Cr(vi). Dalton Trans 42:7854–7858. https://doi.org/10.1039/C3DT50149C

    Article  CAS  PubMed  Google Scholar 

  17. Li R, Liu L, Yang F (2015) Polyaniline/reduced graphene oxide/Fe3O4 nano-composite for aqueous Hg(II) removal. Water Sci Technol 72:2062–2070. https://doi.org/10.2166/wst.2015.361

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Han J, Wang M, Guo R (2017) Fe3O4/PANI/MnO2 core–shell hybrids as advanced adsorbents for heavy metal ions. J Mater Chem A 5:4058–4066. https://doi.org/10.1039/C6TA10499A

    Article  CAS  Google Scholar 

  19. Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2011) Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater 190:381–390. https://doi.org/10.1016/j.jhazmat.2011.03.062

    Article  CAS  PubMed  Google Scholar 

  20. Afshar A, Sadjadi SAS, Mollahosseini A, Eskandarian MR (2016) Polypyrrole-polyaniline/Fe3O4 magnetic nanocomposite for the removal of Pb(II) from aqueous solution. Korean J Chem Eng 33:669–677. https://doi.org/10.1007/s11814-015-0156-1

    Article  CAS  Google Scholar 

  21. Ghorbani M, Eisazadeh H (2013) Removal of COD, color, anions and heavy metals from cotton textile wastewater by using polyaniline and polypyrrole nanocomposites coated on rice husk ash. Compos Part B: Eng 45:1–7. https://doi.org/10.1016/j.compositesb.2012.09.035

    Article  CAS  Google Scholar 

  22. Lashkenari MS, Davodi B, Ghorbani M, Eisazadeh H (2012) Use of core-shell polyaniline/polystyrene nanocomposite for removal of Cr (VI). High Perform Polym 24:345–355. https://doi.org/10.1177/0954008311436222

    Article  CAS  Google Scholar 

  23. Karthik R, Meenakshi S (2016) Biosorption of Pb(II) and Cd(II) ions from aqueous solution using polyaniline/chitin composite. Sep Sci Technol 51:733–742. https://doi.org/10.1080/01496395.2015.1130060

    Article  CAS  Google Scholar 

  24. Karthik R, Meenakshi S (2015) Synthesis, characterization and Cr(VI) uptake study of polyaniline coated chitin. Int J Biol Macromol 72:235–242. https://doi.org/10.1016/j.ijbiomac.2014.08.022

    Article  CAS  PubMed  Google Scholar 

  25. Karthik R, Meenakshi S (2015) Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int J Biol Macromol 72:711–717. https://doi.org/10.1016/j.ijbiomac.2014.09.023

    Article  CAS  PubMed  Google Scholar 

  26. Liu X, Qian X, Shen J, Zhou W, An X (2012) An integrated approach for Cr(VI)-detoxification with polyaniline/cellulose fiber composite prepared using hydrogen peroxide as oxidant. Bioresour Technol 124:516–519. https://doi.org/10.1016/j.biortech.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  27. Qiu B, Xu C, Sun D, Yi H, Guo J, Zhang X, Qu H, Guerrero M, Wang X, Noel N, Luo Z, Guo Z, Wei S (2014) Polyaniline coated ethyl cellulose with improved hexavalent chromium removal. ACS Sustain Chem Eng 2:2070–2080. https://doi.org/10.1021/sc5003209

    Article  CAS  Google Scholar 

  28. Shyaa AA, Hasan OA, Abbas AM (2015) Synthesis and characterization of polyaniline/zeolite nanocomposite for the removal of chromium(VI) from aqueous solution. J Saudi Chem Soc 19:101–107. https://doi.org/10.1016/j.jscs.2012.01.001

    Article  Google Scholar 

  29. Javadian H, Vahedian P, Toosi M (2013) Adsorption characteristics of Ni(II) from aqueous solution and industrial wastewater onto polyaniline/HMS nanocomposite powder. Appl Surf Sci 284:13–22. https://doi.org/10.1016/j.apsusc.2013.06.111

    Article  CAS  Google Scholar 

  30. Shojaei M, Sadjadi S, Rajabi-Hamane M, Ahmadi SJ (2015) Synthesis of TiO2/polyacrylonitrile nanofibers composite and its application to lead ions removal from waste waters. Desalin Water Treat 56:1403–1412

    Article  CAS  Google Scholar 

  31. Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50. https://doi.org/10.1016/S1369-7021(06)71389-X

    Article  CAS  Google Scholar 

  32. Fotia A, Malara A, Paone E, Bonaccorsi L, Frontera P, Serrano G, Caneschi A (2021) Self standing mats of blended polyaniline produced by electrospinning. Nanomaterials 11:1269. https://doi.org/10.3390/nano11051269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Rutledge GC (2012) Electrical conductivity of electrospun polyaniline and polyaniline-blend fibers and mats. Macromolecules 45:4238–4246. https://doi.org/10.1021/ma3005982

    Article  CAS  Google Scholar 

  34. Chen Y, Li C, Hou Z, Huang S, Liu B, He F, Luo L, Lin J (2015) Polyaniline electrospinning composite fibers for orthotopic photothermal treatment of tumors in vivo. New J Chem 39:4987–4993. https://doi.org/10.1039/C5NJ00327J

    Article  CAS  Google Scholar 

  35. Fryczkowski R, Gorczowska M, Fryczkowska B, Janicki J (2013) The effect of solvent on the properties of nanofibres obtained by electrospinning from a mixture of poly(3-hydroxybutyrate) and polyaniline. Synthetic Metals 166:14–21. https://doi.org/10.1016/j.synthmet.2013.01.011

    Article  CAS  Google Scholar 

  36. Sharma Y, Tiwari A, Hattori S, Terada D, Sharma AK, Ramalingam M, Kobayashi H (2012) Fabrication of conducting electrospun nanofibers scaffold for three-dimensional cells culture. Int J Biol Macromol 51:627–631. https://doi.org/10.1016/j.ijbiomac.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  37. Zamani P, Higgins D, Hassan F, Jiang G, Wu J, Abureden S, Chen Z (2014) Electrospun iron–polyaniline–polyacrylonitrile derived nanofibers as non-precious oxygen reduction reaction catalysts for PEM fuel cells. Electrochim Acta 139:111–116. https://doi.org/10.1016/j.electacta.2014.07.007

    Article  CAS  Google Scholar 

  38. Gwon YJ, Lee JJ, Lee KW, Ogden MD, Harwood LM, Lee TS (2020) Prussian blue decoration on polyacrylonitrile nanofibers using polydopamine for effective Cs ion removal. Ind Eng Chem Res 59:4872–4880. https://doi.org/10.1021/acs.iecr.9b06639

    Article  CAS  Google Scholar 

  39. Qavamnia SS, Nasouri K (2015) Conductive polyacrylonitrile/polyaniline nanofibers prepared by electrospinning process. Polym Sci, Ser A 57:343–349. https://doi.org/10.1134/S0965545X1503013X

    Article  CAS  Google Scholar 

  40. Shao W, Jamal R, Xu F, Ubul A, Abdiryim T (2012) The effect of a small amount of water on the structure and electrochemical properties of solid-state synthesized polyaniline. Materials 5:1811–1825

    Article  CAS  PubMed Central  Google Scholar 

  41. Zhang W, An Y, Li S, Liu Z, Chen Z, Ren Y, Wang S, Zhang X, Wang X (2020) Enhanced heavy metal removal from an aqueous environment using an eco-friendly and sustainable adsorbent. Sci Rep 10:16453. https://doi.org/10.1038/s41598-020-73570-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jafaryan A, Sadjadi S, Gharib A, Ahmadi SJ (2019) Optimization of cadmium adsorption from aqueous solutions by functionalized graphene and the reversible magnetic recovery of the adsorbent using response surface methodology. Appl Organomet Chem 33:e5085. https://doi.org/10.1002/aoc.5085

    Article  CAS  Google Scholar 

  43. Verma M, Lee I, Sharma S, Kumar R, Kumar V, Kim H (2021) Simultaneous removal of heavy metals and ciprofloxacin micropollutants from wastewater using ethylenediaminetetraacetic acid-functionalized β-cyclodextrin-chitosan adsorbent. ACS Omega 6:34624–34634. https://doi.org/10.1021/acsomega.1c05015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang J, Pan K, Giannelis EP, Cao B (2013) Polyacrylonitrile/polyaniline core/shell nanofiber mat for removal of hexavalent chromium from aqueous solution: mechanism and applications. RSC Adv 3:8978–8987

    Article  CAS  Google Scholar 

  45. Kalam S, Abu-Khamsin SA, Kamal MS, Patil S (2021) Surfactant adsorption isotherms: a review. ACS Omega 6:32342–32348. https://doi.org/10.1021/acsomega.1c04661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. d’Halluin M, Rull-Barrull J, Bretel G, Labrugère C, Le Grognec E, Felpin F-X (2017) Chemically modified cellulose filter paper for heavy metal remediation in water. ACS Sustain Chem Eng 5:1965–1973. https://doi.org/10.1021/acssuschemeng.6b02768

    Article  CAS  Google Scholar 

  47. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:3039817. https://doi.org/10.1155/2017/3039817

    Article  CAS  Google Scholar 

  48. Dechojarassri D, Asaina S, Omote S, Nishida K, Furuike T, Tamura H (2017) Adsorption and desorption behaviors of cesium on rayon fibers coated with chitosan immobilized with Prussian blue. Int J Biol Macromol 104:1509–1516

    Article  CAS  PubMed  Google Scholar 

  49. Yamashita A (2018) Studies on electrochemical immobilization of Prussian blue on carbon fiber and the adsorption behavior of cesium ions on the adsorbent. Doctoral dissertation, Hokkaido University

  50. Kobayashi T, Ohshiro M, Nakamoto K, Uchida S (2016) Decontamination of extra-diluted radioactive cesium in fukushima water using zeolite–polymer composite fibers. Ind Eng Chem Res 55:6996–7002

    Article  CAS  Google Scholar 

  51. Ooshiro M, Kobayashi T, Uchida S (2019) Fibrous zeolite-polymer composites for decontamination of radioactive waste water extracted from radio-Cs fly ash. Int J Eng Techn Res 7:265044

    Google Scholar 

  52. Kim H, Kim M, Lee W, Kim S (2018) Rapid removal of radioactive cesium by polyacrylonitrile nanofibers containing Prussian blue. J Hazard Mater 347:106–113

    Article  CAS  PubMed  Google Scholar 

  53. Park KH, Choi DY, Park JH, Kim C, Kim TY, Lee JW (2016) Characterization and application of electrospun Prussian blue nanofibers synthesized by electrospinning polyacrylonitrile solution. Int J Electrochem Sci 11:1472–1481

    Article  CAS  Google Scholar 

  54. Chen FP, Jin GP, Peng SY, Liu XD, Tian JJ (2016) Recovery of cesium from residual salt lake brine in Qarham playa of Qaidam Basin with prussian blue functionalized graphene/carbon fibers composite. Colloids Surf, A 509:359–366

    Article  CAS  Google Scholar 

  55. Dechojarassri D, Omote S, Minamino T, Nishida K, Furuike T, Tamura H (2018) Characterization of Prussian blue-immobilized chitin-coated nylon fibers as adsorbent for cesium ions. Eng Appl Sci Res 45:196–202

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Nuclear Science and Technology Organization of Iran for their invaluable contribution to prepare the materials and equipment

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Saberi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Human and animal rights

All data generated or analyzed during this study doesn’t involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadjadi, S., Saberi, R. & Ammari Allahyari, S. Effective removal of cesium ions by using PAN/PANI blend nanofibers prepared by electrospinning method. J Radioanal Nucl Chem 333, 1841–1850 (2024). https://doi.org/10.1007/s10967-024-09390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09390-0

Keywords

Navigation