Skip to main content
Log in

New approach for in-house production of [68Ga]Ga-NOTA-UBI(29–41) using a titanium dioxide column-based generator

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Efforts have been dedicated to distinguishing between infections and sterile inflammations. This study presents a novel approach for in-house synthesis of [68Ga]Ga-NOTA-UBI(29–41) employing a titanium dioxide column-based 68Ga-generator. The optimized method yielded the radiopeptide with high radiochemical purity (> 99%) and stability (up to 90 min). [68Ga]Ga-NOTA-UBI(29–41) demonstrates hydrophilic characteristics (Log P = − 3.57 ± 0.20) and a binding to serum proteins of ~ 60%. The affinity of [68Ga]Ga-NOTA-UBI(29–41) to bacteria was directly proportional to the increasing quantity of bacterial cells. Consequently, this method generates [68Ga]Ga-NOTA-UBI(29–41) with remarkable physicochemical characteristics and high binding affinity to bacterial cells, rendering it suitable for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. Raw data that support the findings of this study are available from the corresponding authors, upon reasonable request.

References

  1. Antimicrobial Resistance Collaborators (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. https://doi.org/10.1016/S0140-6736(21)02724-0

    Article  Google Scholar 

  2. Dadgostar P (2019) Antimicrobial resistance: implications and costs. Infect Drug Resist. https://doi.org/10.2147/IDR.S234610

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goldsmith SJ, Vallabhajosula S (2009) Clinically proven radiopharmaceuticals for infection imaging: mechanisms and applications. Semin Nucl Med. https://doi.org/10.1053/j.semnuclmed.2008.08.002

    Article  PubMed  Google Scholar 

  4. Polvoy I, Flavell RR, Rosenberg OS, Ohliger MA, Wilson DM (2020) Nuclear imaging of bacterial infection. The state of the art and future directions. J Nucl Med. https://doi.org/10.2967/jnumed.120.244939

    Article  PubMed  PubMed Central  Google Scholar 

  5. Palestro CJ, Love C (2017) Role of nuclear medicine for diagnosing infection of recently implanted lower extremity arthroplasties. Semin Nucl Med. https://doi.org/10.1053/j.semnuclmed.2017.07.008

    Article  PubMed  Google Scholar 

  6. Welling M, Paulusma-Annema A, Balter HS, Pauwels EK, Nibbering PH (2000) Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med. https://doi.org/10.1007/s002590050036

    Article  PubMed  Google Scholar 

  7. Luppeti A, Welling MM, Pauwels EKJ, Nibbering PH (2003) Radiolabelled antimicrobial peptides for infection detection. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(03)00579-6

    Article  Google Scholar 

  8. Ferro-Flores G, Arteaga De Murphy C, Pedraza-López M, Meléndez-Alafort L, Zhang YM, Rusckowski M et al (2003) In vitro and in vivo assessment of 99mTc-UBI specificity for bacteria. Nucl Med Biol 30:597–603

    Article  CAS  PubMed  Google Scholar 

  9. Akhtar MS, Qaisar A, Irfanullah J, Iqbal J, Khan B, Jehangir M, Nadeem MA, Imran MB (2005) Antimicrobial peptide 99mTc-Ubiquicidin 29–41 as human infection-imaging agent: clinical trial. J Nucl Med 46:567–573

    CAS  PubMed  Google Scholar 

  10. Ferro-Flores G, Avila-Rodríguez MA, García-Pérez FO (2016) Imaging of bacteria with radiolabeled ubiquicidin by SPECT and PET techniques. Clin Transl Imaging 4:175–182

    Article  Google Scholar 

  11. Ebenhan T, Zeevaart JR, Venter JD, Govender T, Kruger GH, Jarvis NV et al (2014) Preclinical evaluation of 68Ga-labeled 1,4,7-triazacyclononane- 1,4,7-triacetic acid-ubiquicidin as a radioligand for PET infection imaging. J Nucl Med 55:308–314

    Article  CAS  PubMed  Google Scholar 

  12. Bhatt J, Mukherjee A, Shinto A, Koramadai Karuppusamy K, Korde A, Kumar M et al (2018) Gallium-68 labeled Ubiquicidin derived octapeptide as a potential infection imaging agent. Nucl Med Biol 62–63:47–53

    Article  PubMed  Google Scholar 

  13. Ebenhan T, Sathekge MM, Lengana T, Koole M, Gheysens O, Govender T et al (2018) 68Ga-NOTA-functionalized ubiquicidin: cytotoxicity, biodistribution, radiation dosimetry, and first-in-human PET/CT imaging of infections. J Nucl Med 59:334–339

    Article  CAS  PubMed  Google Scholar 

  14. Dash A, Chakravarty R (2019) Radionuclide generators: the prospect of availing PET radiotracers to meet current clinical needs and future research demands. Am J Nucl Med Mol Imaging 9:30–66

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsionou MI, Knapp CE, Foley CA, Munteanu CR, Cakebread A, Imberti C et al (2017) Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv 7:49586–49599

    Article  CAS  PubMed  Google Scholar 

  16. Velikyan I (2018) Prospective of 68Ga radionuclide contribution to the development of imaging agents for infection and inflammation. Contrast Med Mol Imaging. https://doi.org/10.1155/2018/9713691

    Article  Google Scholar 

  17. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA et al (2007) Processing of generator-produced 68Ga for medical application. J Nucl Med 48:1741–1748

    Article  CAS  PubMed  Google Scholar 

  18. Marjanovic-Painter B, Kleynhans J, Zeevaart JR, Rohwer E, Ebenhan T (2023) A decade of ubiquicidin development for PET imaging of infection: a systematic review. Nucl Med Biol. https://doi.org/10.1016/j.nucmedbio.2022.11.001

    Article  PubMed  Google Scholar 

  19. Jain A, Subramanian S, Pandey U, Sarma HD, Ram R, Dash A (2016) In-house preparation of macroaggregated albumin (MAA) for 68Ga labeling and its comparison with commercially available MAA. J Radioanal Nucl Chem 308:817–824

    Article  CAS  Google Scholar 

  20. Ziegler SI (2005) Positron emission tomography: principles, technology, and recent developments. Nucl Phys A 752:679–687

    Article  Google Scholar 

  21. Jiang Y, Zhang J (2023) Current status of and perspectives on radiolabelled Ubiquicidin 29–41 derivatives for bacterial infection imaging. Mini-Rev Med Chem. https://doi.org/10.2174/1389557523666230131100654

    Article  PubMed  Google Scholar 

  22. Vilche M, Reyes AL, Vasilskis E, Oliver P, Balter H, Engler H (2016) 68Ga-NOTA-UBI-29-41 as a PET tracer for detection of bacterial infection. J Nucl Med 57:622–627

    Article  CAS  PubMed  Google Scholar 

  23. Mukherjee A, Bhatt J, Shinto A, Korde A, Kumar M, Kamaleshwaran K et al (2018) 68Ga-NOTA-ubiquicidin fragment for PET imaging of infection: from bench to bedside. J Pharm Biomed Anal 159:245–251

    Article  CAS  PubMed  Google Scholar 

  24. Sriwiang W, Rangsawai W, Pumkhem S (2019) 68Ga-labeled ubiquicidin for monitoring of mouse infected with Staphylococcus aureus. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1285/1/012028

    Article  Google Scholar 

  25. Yoshizuka K, Pietzsch H-J, Seifert S, Stephan H (2013) Quantitative structure property relationship of logP for radiopharmaceutical technetium and rhenium complexes by using molecular dynamics calculations. Solvent Extr Res Dev 20:15–27

    Article  Google Scholar 

  26. Bhatt J, Mukherjee A, Korde A, Kumar M, Sarma HD, Dash A (2017) Radiolabeling and preliminary evaluation of Ga-68 labeled NODAGA-ubiquicidin fragments for prospective infection imaging. Mol Imaging Biol 19:59–67

    Article  CAS  PubMed  Google Scholar 

  27. Jeghers O, Piepsz A, Ham HR (1990) What does protein binding of radiopharmaceuticals mean exactly? Eur J Nucl Med 17:101–102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Departamento de Medicina Nuclear and the Centro de Experimentação e Treinamento em Cirurgia (CETEC) of the Hospital Israelita Albert Einstein and the Santa Casa de Sao Paulo School of Medical Sciences. CRPS also thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonardo Lima Fuscaldi or Luciana Malavolta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, C.R.d., Fuscaldi, L.L., Durante, A.C.R. et al. New approach for in-house production of [68Ga]Ga-NOTA-UBI(29–41) using a titanium dioxide column-based generator. J Radioanal Nucl Chem 333, 1253–1262 (2024). https://doi.org/10.1007/s10967-024-09377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09377-x

Keywords

Navigation