Skip to main content
Log in

Comparison of adsorption of U(VI) by magnetic MCM-41, MCM-48 and SBA-15 mesoporous silicas

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Three types of magnetic mesoporous silicas (MMSs), namely, MMCM-41, MMCM-48 and MSBA-15 were prepared by a hydrothermal method using CTAB and P123 as templates. The structure and physicochemical properties of MMSs were characterized by small angle XRD, VSM, ζ potential analyzer, contact angle measurer, and XPS, etc. The potential applications of MMSs in U(VI) recovery were thoroughly investigated. The adsorptive kinetics, thermodynamics, and selectivity of MMCM-41, MMCM-48 and MSBA-15 were compared. The results show that MSBA-15 revealed a high capacity for U(VI) (341.94 mg·g−1) and a superior selectivity than MMCM-41 and MMCM-48. The adsorption mechanism was explored by using the relevant adsorption models and XPS. The results indicated that MSBA-15 could be considered a strong candidate for the adsorption and recovery of U(VI) from radioactive wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the manuscript.

References

  1. Zhu J, Luo Y, Liu J, Liu Q, Yu J, Liu J, Chen R, Li R, Wang J (2023) Effect of fiber surface functionalization on adsorption behavior of uranium from seawater desalination brine. Desalination 564:116774. https://doi.org/10.1016/j.desal.2023.116774

    Article  CAS  Google Scholar 

  2. Liu F, Huang W, Wang S, Hu B (2022) Investigation of adsorption properties and mechanism of uranium(VI) and europium(III) on magnetic amidoxime-functionalized MCM-41. Appl Surf Sci 594:153376. https://doi.org/10.1016/j.apsusc.2022.153376

    Article  CAS  Google Scholar 

  3. Amesh P, Venkatesan KA, Suneesh AS, Gupta DK, Ravindran TR (2021) Adsorption of uranium by diethylenetriamine functionalized magnetic mesoporous silica. Environ Nanotechnol Monit Manag 16:100583. https://doi.org/10.1016/j.enmm.2021.100583

    Article  CAS  Google Scholar 

  4. Xia H, Ren Q, Lv J, Wang Y, Feng Z, Li Y, Wang C, Liu Y, Wang Y (2023) Hydrothermal fabrication of phytic acid decorated chitosan-graphene oxide composites for efficient and selective adsorption of uranium (VI). J Environ Chem Eng 11:110760. https://doi.org/10.1016/j.jece.2023.110760

    Article  CAS  Google Scholar 

  5. Lewandowski D, Cegłowski M, Smoluch M, Reszke E, Silberring J, Schroeder G (2017) Magnetic mesoporous silica Fe3O4@SiO2@meso-SiO2 and Fe3O4@SiO2@meso-SiO2-NH2 as adsorbents for the determination of trace organic compounds. Microp Mesop Mater 240:80–90. https://doi.org/10.1016/j.micromeso.2016.11.010

    Article  CAS  Google Scholar 

  6. Giannakoudakis DA, Anastopoulos I, Barczak M, Name D, Terpilowski K, Sigarikar E, Shams M, Coy E, Bakandritsos A, Katsoyiannis I, Colmenares JC, Pashalidis I (2021) Enhanced uranium removal from acidic wastewater by phosphonate-functionalized ordered mesoporous silica: surface chemistry matters the most. J Hazard Mater 413:125279. https://doi.org/10.1016/j.jhazmat.2021.125279

    Article  CAS  PubMed  Google Scholar 

  7. Gunathilake CA, Górka J, Dai S, Jaroniec M (2015) Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J Mater Chem 3:11650–11659. https://doi.org/10.1039/C5TA02863A

    Article  CAS  Google Scholar 

  8. Jiang X, Wang H, Wang Q, Hu E, Duan Y (2020) Immobilizing amino-functionalized mesoporous silica into sodium alginate for efficiently removing low concentrations of uranium. J Clean Prod 247:119162. https://doi.org/10.1016/j.jclepro.2019.119162

    Article  CAS  Google Scholar 

  9. Zheng H, Zhou L, Liu Z, Le Z, Ouyang J, Huang G, Shehzad H (2019) Functionalization of mesoporous Fe3O4@SiO2 nanospheres for highly efficient U(VI) adsorption. Microp Mesop Mater 279:316–322. https://doi.org/10.1016/j.micromeso.2018.12.038

    Article  CAS  Google Scholar 

  10. He H, Meng X, Yue Q, Yin W, Gao Y, Fang P, Shen L (2021) Thiol-ene click chemistry synthesis of a novel magnetic mesoporous silica/chitosan composite for selective Hg(II) capture and high catalytic activity of spent Hg(II) adsorbent. J Chem Eng 405:126743. https://doi.org/10.1016/j.cej.2020.126743

    Article  CAS  Google Scholar 

  11. Li H, Ménard M, Vardanyan A, Charnay C, Durand JO (2021) Synthesis of triethoxysilylated cyclen derivatives, grafting on magnetic mesoporous silica nanoparticles and application to metal ion adsorption. RSC Adv 11:10777–10784. https://doi.org/10.1039/D1RA01581H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li D, Egodawatte S, Kaplan DI, Larsen SC, Serkiz SM, Seaman J (2016) Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater. J Hazard Mater 317:494–502. https://doi.org/10.1016/j.jhazmat.2016.05.093

    Article  CAS  PubMed  Google Scholar 

  13. Liu F, Wang A, Xiang M, Hu Q, Hu B (2002) Effective adsorption and immobilization of Cr (VI) and U(VI) from aqueous solution by magnetic amine-functionalized SBA-15. Sep Purif Technol 282:120042. https://doi.org/10.1016/j.seppur.2021.120042

    Article  CAS  Google Scholar 

  14. Han X, Wang Y, Cao X, Dai Y, Liu Y, Dong Z, Zhang Z, Liu Y (2019) Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution. Appl Surf Sci 484:1035–1040. https://doi.org/10.1016/j.apsusc.2019.04.121

    Article  CAS  Google Scholar 

  15. Chen L, Wang H, Cao X, Feng Y, Zhang Z, Wang Y, Liu Y (2021) Effects of different phosphorus sources on the adsorption of U (VI) by Zr (IV) organophosphate hybrids. J Solid State Chem 302:122434. https://doi.org/10.1016/j.jssc.2021.122434

    Article  CAS  Google Scholar 

  16. Chen L, Wang Y, Cao X, Zhang Z, Liu Y (2023) Effect of doping cation on the adsorption properties of hydroxyapatite to uranium. J Solid State Chem 317:123687. https://doi.org/10.1016/j.jssc.2022.123687

    Article  CAS  Google Scholar 

  17. Zholobenko VL, Khodakov AY, Impéror-Clerc M, Durand D, Grillo I (2008) Initial stages of SBA-15 synthesis: an overview. Adv Colloid Interface Sci 142:67–74. https://doi.org/10.1016/j.cis.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  18. Lu L, Zhang L, Hu C (2015) Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres. Chem Eng J 274:298–306. https://doi.org/10.1016/j.cej.2015.03.13

    Article  Google Scholar 

  19. Saha B, Singha D, Das T, Nandi M (2023) Tris(4-formyl phenyl)amine functionalized mesoporous silica for selective sensing of Al3+ and its separation. Inorganica Chim Acta 550:121455. https://doi.org/10.1016/j.ica.2023.121455

    Article  CAS  Google Scholar 

  20. Lian J, Liu Y, Chen L, Li L, Ding D, Dai Z (2020) Facile synthesis of calcium peroxide modified mesoporous silica for enhanced uranium extraction from uranium tailings leachate. J Environ Chem Eng 10:108914. https://doi.org/10.1016/j.jece.2022.108914

    Article  CAS  Google Scholar 

  21. Jia L, Shen J, Li Z, Zhang D, Zhang Q, Duan C, Liu G, Zheng D, Liu Y, Tian X (2012) Successfully tailoring the pore size of mesoporous silica nanoparticles: exploitation of delivery systems for poorly water-soluble drugs. Int J Pharm 439:81–91. https://doi.org/10.1016/j.ijpharm.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  22. Zhou C, Yu S, Ma K, Liang B, Tang S, Liu C, Yue H (2021) Amine-functionalized mesoporous monolithic adsorbents for post-combustion carbon dioxide capture. Chem Eng J 413:127675. https://doi.org/10.1016/j.cej.2020.127675

    Article  CAS  Google Scholar 

  23. Zhang J, Huang L, Ye Z, Zhao Q, Li Y, Wu Y, Zhang W, Zhang H (2020) Removal of arsenite and arsenate from contaminated water using Fe-ZrO-modified biochar. J Environ Chem Eng 10:108765. https://doi.org/10.1016/j.jece.2022.108765

    Article  CAS  Google Scholar 

  24. López-Pérez L, Zarubina V, Melián-Cabrera I (2021) The Brunauer–Emmett–Teller model on alumino-silicate mesoporous materials. How far is it from the true surface area? Microp Mesop Mater. 319:111065. https://doi.org/10.1016/j.micromeso.2021.111065

    Article  CAS  Google Scholar 

  25. Wang H, Zhai L, Li Y, Shi T (2008) Preparation of irregular mesoporous hydroxyapatite. Mater Res Bull 43:1607–1614. https://doi.org/10.1016/j.materresbull.2007.06.034

    Article  CAS  Google Scholar 

  26. Wang GZ, Cao Z, Gu D, Pfänder N, Swertz AC, Spliethoff B, Bongard HJ, Weidenthaler C, Schmidt W, Rinaldi R (2016) Nitrogen-doped ordered mesoporous carbon supported bimetallic PtCo nanoparticles for upgrading of biophenolics. Angew Chem Int Ed 55:8850–8855. https://doi.org/10.1002/anie.201511558

    Article  CAS  Google Scholar 

  27. Thommes M, Smarsly B, Groenewolt M, Ravikovitch PI, Neimark AV (2006) Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro-and mesoporous silicas. Langmuir 22:756–764. https://doi.org/10.1021/la051686h

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Lin Z, Zhu J, Liu J, Yu J, Liu Q, Chen R, Li Y, Wang J (2023) Enhancing adsorption performance and selectivity for uranium by constructing biaxial adsorption sites on eco-friendly bamboo strips. Sep Purif Technol 315:123727. https://doi.org/10.1016/j.seppur.2023.123727

    Article  CAS  Google Scholar 

  29. Hu H, Gao M, Wang T, Jiang L (2023) Efficient uranium adsorption and mineralization recycle by nano-MgO biochar with super-hydrophilic surface. J Environ Chem Eng 11:110542. https://doi.org/10.1016/j.jece.2023.110542

    Article  CAS  Google Scholar 

  30. Xu J, Liu Z, Li Q, Wang Y, Shah T, Ahmad M, Zhang Q, Zhang B (2021) Wrinkled Fe3O4@C magnetic composite microspheres: regulation of magnetic content and their microwave absorbing performance. J Colloid Interface Sci 601:397–410. https://doi.org/10.1016/j.jcis.2021.05.153

    Article  CAS  PubMed  Google Scholar 

  31. Acheampong EO, Wang K, Lv R, Lin S, Sun S, Golubev YG, Kotova EL, Kotova OB (2023) Efficient removal of uranium (VI) from aqueous solution by thiol-functionalized montmorillonite/nanoscale zero-valent iron composite. J Radioanal Nucl Ch 332:1989–2002. https://doi.org/10.1007/s10967-023-08847-y

    Article  CAS  Google Scholar 

  32. Xin Q, Wang Q, Luo K, Lei Z, Hu E, Wang H, Wang H (2024) Mechanism for the seleikctive adsorption of uranium from seawater using carboxymethyl-enhanced polysaccharide-based amidoxime adsorbent. Carbohydr Polym 324:121576. https://doi.org/10.1016/j.carbpol.2023.121576

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Wang Z-Y, Ren Q, Zhang F, Li X-X, Wu Q, Hua R, Yan Z-Y, Wang Y (2023) N, N-bis (2-hydroxyethyl) malonamide based amidoxime functionalized polymer immobilized in biomembranes for highly selective adsorption of uranium(VI). Chemosphere 337:139321. https://doi.org/10.1016/j.chemosphere.2023.139321

    Article  CAS  PubMed  Google Scholar 

  34. He Y, Tian H, Xiang A, Wang H, Li J, Luo X, Rajulu AV (2021) Fabrication of PVA nanofibers grafted with octaamino-POSS and their application in heavy metal adsorption. J Polym Environ 29:1566–1575. https://doi.org/10.1007/s10924-020-01865-x

    Article  CAS  Google Scholar 

  35. Qi L, Teng F, Deng X, Zhang Y, Zhong X (2019) Experimental study on adsorption of Hg(II) with microwave-assisted alkali-modified fly ash. Powder Technol 351:153–158. https://doi.org/10.1016/j.powtec.2019.04.029

    Article  CAS  Google Scholar 

  36. Fasfous II, Dawoud JN (2012) Uranium (VI) sorption by multiwalled carbon nanotubes from aqueous solution. Appl Surf Sci 259:433–440. https://doi.org/10.1016/j.apsusc.2012.07.062

    Article  CAS  Google Scholar 

  37. Tao X, Fang Y (2020) Preparation of amidoxime modified calixarene fiber for highly efficient adsorption of uranium (VI). Sep Purif Technol 303:122257. https://doi.org/10.1016/j.seppur.2022.122257

    Article  CAS  Google Scholar 

  38. Abd El Fatah A, Elashry SM, Hashem M, Kouraim MN (2022) Uranium extraction from nitrate media using amine functionalized poly acrylate hydrogel/nano silica. Sep Sci Technol 57:1187–1197. https://doi.org/10.1080/01496395.2021.1982977

    Article  CAS  Google Scholar 

  39. Amesh P, Venkatesan K, Suneesh A, Gupta DK, Ravindran T (2021) Diethylenetriamine functionalized silica gel for adsorption of uranium from aqueous solution and seawater. J Radioanal Nucl Ch 329:337–349. https://doi.org/10.1007/s10967-021-07761-5

    Article  CAS  Google Scholar 

  40. Gado M, Rashad M, Kassab W, Badran M (2021) Highly developed surface area thiosemicarbazide biochar derived from aloe vera for efficient adsorption of uranium. Radiochemistry 63:353–363. https://doi.org/10.1134/S1066362221030139

    Article  CAS  Google Scholar 

  41. Tian Y, Liu L, Ma F, Zhu X, Dong H, Zhang C, Zhao F (2021) Synthesis of phosphorylated hyper-cross-linked polymers and their efficient uranium adsorption in water. J Hazard Mater 419:126538. https://doi.org/10.1016/j.jhazmat.2021.126538

    Article  CAS  PubMed  Google Scholar 

  42. Anirudhan T, Deepa J (2015) Synthesis and characterization of multi-carboxyl-functionalized nanocellulose/nanobentonite composite for the adsorption of uranium (VI) from aqueous solutions: Kinetic and equilibrium profiles. Chem Eng J 273:390–400. https://doi.org/10.1016/j.cej.2015.03.007

    Article  CAS  Google Scholar 

  43. Lehtonen J, Hassinen J, Kumar AA, Johansson LS, Mäenpää R, Pahimanolis N, Pradeep T, Ikkala O, Rojas OJ (2020) Phosphorylated cellulose nanofibers exhibit exceptional capacity for uranium capture. Cellulose 27:10719–10732. https://doi.org/10.1007/s10570-020-02971-8

    Article  CAS  Google Scholar 

  44. Gül Üd, Şenol ZM, Gürsoy N, Şimşek S (2019) Effective UO22+ removal from aqueous solutions using lichen biomass as a natural and low-cost biosorbent. J Environ Radioact 205:93–100. https://doi.org/10.1016/j.jenvrad.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  45. Zhou H, Yu J, Liu S, Wang L, Li P (2023) High-efficient uranium-ion adsorption on manganate nanoribbons. Mater Lett 333:133652. https://doi.org/10.1016/j.matlet.2022.133652

    Article  CAS  Google Scholar 

  46. Smječanin N, Bužo D, Mašić E, Nuhanović M, Sulejmanović J, Azhar O, Sher F (2002) Algae based green biocomposites for uranium removal from wastewater: kinetic, equilibrium and thermodynamic studie. Mater Chem Phys 283:125998. https://doi.org/10.1016/j.matchemphys.2022.125998

    Article  CAS  Google Scholar 

  47. Singhal P, Vats BG, Yadav AK, Pulhani V (2020) Efficient extraction of uranium from environmental samples using phosphoramide functionalized magnetic nanoparticles: understanding adsorption and binding mechanisms. J Hazard Mater 384:121353

    Article  CAS  PubMed  Google Scholar 

  48. Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215–216:208–216. https://doi.org/10.1016/j.jhazmat.2012.02.054

    Article  CAS  PubMed  Google Scholar 

  49. Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manag 169:8–17. https://doi.org/10.1016/j.jenvman.2015.12.005

    Article  CAS  Google Scholar 

  50. Sarafraz H, Minuchehr A, Alahyarizadeh G (2017) Synthesis of enhanced phosphonic functional groups mesoporous silica for uranium selective adsorption from aqueous solutions. Sci Rep 7:11675. https://doi.org/10.1038/s41598-017-11993-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vidya K, Gupta NM, Selvam P (2004) Influence of pH on the sorption behaviour of uranyl ions in mesoporous MCM-41 and MCM-48 molecular sieves. Mater Res Bull 39:2035–2048. https://doi.org/10.1016/j.materresbull.2004.07.013

    Article  CAS  Google Scholar 

  52. Aslani CK, Amik O (2021) Active Carbon/PAN composite adsorbent for uranium removal: modeling adsorption isotherm data, thermodynamic and kinetic studies. Appl Radiat Isot 168:109474. https://doi.org/10.1016/j.apradiso.2020.109474

    Article  CAS  PubMed  Google Scholar 

  53. Zhou L, Shang C, Liu Z, Huang G, Adesina AA (2012) Selective adsorption of uranium (VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interface Sci 366:165–172. https://doi.org/10.1016/j.jcis.2011.09.069

    Article  CAS  PubMed  Google Scholar 

  54. Zeng J, Zhang H, Sui Y, Hu N, Ding D, Wang F, Xue J, Wang Y (2017) New amidoxime-based material TMP-g-AO for uranium adsorption under seawater conditions. Ind Eng Chem Res 56:5021–5032. https://doi.org/10.1021/acs.iecr.6b05006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22006014, 21906017), Jiangxi Provincial Natural Science Foundation (Grant No. 20202BABL213001).

Author information

Authors and Affiliations

Authors

Contributions

DB wrote the entire draft of the manuscript. The core conceptual idea and study design were all provided by YL and YW. The preparation and adsorptive experiments were conducted out with WC and QL. Material preparation and data analysis were completed by XC and LX. The characterization analysis of the adsorbents was worked out through ZZ and LX. WC has revised most of the content of the manuscript according to the comment of reviewers.

Corresponding authors

Correspondence to Youqun Wang or Yunhai Liu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent to participate

Not applicable consent to participate the authors have consent to participate.

Consent to publish

Consent to publish the authors have consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, D., Cai, W., Xiong, L. et al. Comparison of adsorption of U(VI) by magnetic MCM-41, MCM-48 and SBA-15 mesoporous silicas. J Radioanal Nucl Chem 333, 1343–1356 (2024). https://doi.org/10.1007/s10967-024-09363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09363-3

Keywords

Navigation