Skip to main content
Log in

An assessment of natural and artifical radionuclide content in powdered milk consumed by infants and toddlers in Singapore

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

High-resolution gamma spectrometry was employed to evaluate radioactivity levels in powdered milk sold in Singapore. The mean activity concentrations of 228Ra, 226Ra, 40K and 137Cs in infants’ powdered milk were determined to be 0.442 Bq/kg, 0.251 Bq/kg, 197 Bq/kg and 0.080 Bq/kg respectively, while activity levels in powdered milk consumed by toddlers were 0.494 Bq/kg for 228Ra, 0.216 Bq/kg for 226Ra, 263 Bq/kg for 40K and 0.119 Bq/kg for 137Cs. Annual total effective doses and radiological risk were also estimated for both age groups. The results indicated that consumption of powdered milk poses insignificant health risk to infants and toddlers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cowart JB, Burnett WC (1994) The distribution of uranium and thorium decay-series radionuclides in the environment–a review. J Environ Qual 23:651–662. https://doi.org/10.2134/jeq1994.00472425002300040005x

    Article  CAS  Google Scholar 

  2. Hu Q-H, Weng J-Q, Wang J-S (2010) Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioact 101:426–437. https://doi.org/10.1016/j.jenvrad.2008.08.004

    Article  CAS  PubMed  Google Scholar 

  3. Ipatyev V, Bulavik I, Baginsky V, Goncharenko G, Dvornik A (1999) Forest and Chernobyl: forest ecosystems after the Chernobyl nuclear power plant accident: 1986–1994. J Environ Radioact 42:9–38. https://doi.org/10.1016/S0265-931X(98)00042-3

    Article  CAS  Google Scholar 

  4. Yasunari TJ, Stohl A, Hayano RS, Burkhart JF, Eckhardt S, Yasunari T (2011) Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc Natl Acad Sci USA 108:19530–19534. https://doi.org/10.1073/pnas.1112058108

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Guillén J, Beresford NA, Baeza A, Ontalba MA, Corbacho JA (2020) Transfer of radionuclides and stable elements to foodstuffs in Mediterranean ecosystems. J Environ Radioact 223–224:106379. https://doi.org/10.1016/j.jenvrad.2020.106379

    Article  CAS  PubMed  Google Scholar 

  6. Corcho-Alvarado JA, Balsiger B, Sahli H, Astner M, Byrde F, Röllin S, Holzer R, Mosimann N, Wüthrich S, Jakob A, Burger M (2016) Long-term behavior of 90Sr and 137Cs in the environment: case studies in Switzerland. J Environ Radioact 160:54–63. https://doi.org/10.1016/j.jenvrad.2016.04.027

    Article  CAS  PubMed  Google Scholar 

  7. Ujwal P, Yashodhara I, Sudeep Kumara K, Ravi PM, Karunakara N (2022) Environmental transfer parameters of strontium for soil to cow milk pathway for tropical monsoonal climatic region of the Indian subcontinent. Sci Rep 12:7528. https://doi.org/10.1038/s41598-022-11388-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Canbazoğlu C, Doğru M (2013) A preliminary study on 226Ra, 232Th, 40K and 137Cs activity concentrations in vegetables and fruits frequently consumed by inhabitants of Elazığ Region, Turkey. J Radioanal Nucl Chem 295:1245–1249. https://doi.org/10.1007/s10967-012-1995-4

    Article  CAS  PubMed  Google Scholar 

  9. Yang B, Ha Y, Jin J (2015) Assessment of radiological risk for marine biota and human consumers of seafood in the coast of Qingdao, China. Chemosphere 135:363–369. https://doi.org/10.1016/j.chemosphere.2015.04.097

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Ho PL, Hung LD, Minh VT, Van Chinh D, Thanh TT, Van Tao C (2018) Natural and artificial radionuclides in tea samples determined with gamma spectrometry. J Radioanal Nucl Chem 316:703–707. https://doi.org/10.1007/s10967-018-5827-z

    Article  CAS  Google Scholar 

  11. Heldal HE, Volynkin A, Komperød M, Hannisdal R, Skjerdal H, Rudjord AL (2019) Natural and anthropogenic radionuclides in Norwegian farmed Atlantic salmon (Salmo salar). J Environ Radioact 205–206:42–47. https://doi.org/10.1016/j.jenvrad.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  12. Wilson CA, Hamideh AM, Wang W-H (2019) Establishment of a NORM baseline for selected seafood in the Gulf of Mexico. Mar Pollut Bull 145:448–454. https://doi.org/10.1016/j.marpolbul.2019.06.053

    Article  CAS  PubMed  Google Scholar 

  13. Cruz da Silva R, Lopes JM, Barbosa da Silva L, Domingues AM, da Silva PC, Faria da Silva L, Xavier da Silva A (2020) Radiological evaluation of Ra-226, Ra-228 and K-40 in tea samples: a comparative study of effective dose and cancer risk. Appl Radiat Isot 165:109326. https://doi.org/10.1016/j.apradiso.2020.109326

    Article  CAS  PubMed  Google Scholar 

  14. Ba VN, Thien BN, Phuong HT, Hai VH, Loan TTH (2022) Total annual effective dose and health risk due to intake of natural radionuclides of some vegetables cultivated in suburban Ho Chi Minh City. Vietnam J Radioanal Nucl Chem 331:2359–2367. https://doi.org/10.1007/s10967-022-08290-5

    Article  CAS  Google Scholar 

  15. Ong JX, Lee KM, Koh SP, Wu Y, Chan SH (2022) A study on natural and anthropogenic radionuclides in farmed fish and shellfish in Singapore. J Radioanal Nucl Chem 331:5807–5815. https://doi.org/10.1007/s10967-022-08642-1

    Article  CAS  Google Scholar 

  16. IAEA-TECHDOC-2011. Exposure to radionuclides in food other than during a nuclear or radiological emergency. (2022).

  17. ICRP. Age-dependent doses to members of the public from intake of radionuclides. Part 5: Compilation of ingestion and inhalation coefficients. ICRP Publication 72. (1996)

  18. ICRP. Compendium of dose coefficients based on ICRP Publication 60: ICRP Publication 119. (2012)

  19. US Environmental Protection Agency, US-EPA. Carcinogenic assessment. IRIS (Integrated risk information system). (1993)

  20. Hannan M, Wahid K, Nguyen N (2015) Assessment of natural and artificial radionuclides in Mission (Texas) surface soils. J Radioanal Nucl Chem 305:573–582. https://doi.org/10.1007/s10967-015-4018-4

    Article  CAS  Google Scholar 

  21. Ribeiro FCA, Silva JIR, Lima ESA, Amaral SNMB, Perez DV, Lauria DC (2018) Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties. J Environ Radioact 182:34–43. https://doi.org/10.1016/j.jenvrad.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  22. Kritsananuwat R, Kranrod C, Chanyotha S, Ploykrathok T, Sriploy P (2019) Natural radionuclides in agricultural plants from Northern Thailand. Radiat Protect Dosim 184:397–399. https://doi.org/10.1093/rpd/ncz081

    Article  CAS  Google Scholar 

  23. Pearson AJ, Gaw S, Hermanspahn N, Glover CN, Anderson CWN (2019) Radium in New Zealand agricultural soils: phosphate fertiliser inputs, soil activity concentrations and fractionation profiles. J Environ Radioact 205–206:119–126. https://doi.org/10.1016/j.jenvrad.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  24. Dutra Garcêz RW, Marques Lopes J, da Silva PS, da Costa LD, Paim Viglio E, Gonçalves da Cunha F, Araújo Ribeiro FC, Xavier da Silva A (2020) Activity concentration and mapping of radionuclides in Espírito Santo State soils. Brazil. Radiat Phys Chem 167:108209. https://doi.org/10.1016/j.radphyschem.2019.03.013

    Article  CAS  Google Scholar 

  25. Sotiropoulou M, Florou H (2021) Measurement and calculation of radionuclide concentration ratios from soil to grass in semi-natural terrestrial habitats in Greece. J Environ Radioact 237:106666. https://doi.org/10.1016/j.jenvrad.2021.106666

    Article  CAS  PubMed  Google Scholar 

  26. Giri S, Singh G, Jha VN, Tripathi RM (2011) Risk assessment due to ingestion of natural radionuclides and heavy metals in the milk samples: a case study from a proposed uranium mining area, Jharkhand. Environ Monit Assess 175:157–166. https://doi.org/10.1007/s10661-010-1502-8

    Article  CAS  PubMed  Google Scholar 

  27. Štrok M, Smodiš B (2011) Natural radionuclides in milk from the vicinity of a former uranium mine. Nucl Eng Des 241:1277–1281. https://doi.org/10.1016/j.nucengdes.2010.03.035

    Article  CAS  Google Scholar 

  28. Codex Alimentarius. General standard for contaminants and toxins in food and feed. Codex stan 193–1995. (1995)

  29. Brimo K, Gonze MA, Pourcelot L (2019) Long term decrease of 137Cs bioavailability in French pastures: Results from 25 years of monitoring. J Environ Radioact 208–209:106029. https://doi.org/10.1016/j.jenvrad.2019.106029

    Article  CAS  PubMed  Google Scholar 

  30. Jia G, Magro L (2021) Transfer behaviors of 90Sr and 137Cs from soil to grass to cow milk under natural conditions in Central Italy and their exposure risk. J Radioanal Nucl Chem 330:845–856. https://doi.org/10.1007/s10967-021-07977-5

    Article  CAS  Google Scholar 

  31. National Chemical Contaminants Programme. New Zealand Food Safety Technical Paper No: 2022/28. (2022)

  32. Uwatse OB, Olatunji MA, Khandaker MU, Amin YM, Bradley DA, Alkhorayef M, Alzimami K (2015) Measurement of natural and artificial radioactivity in infant powdered milk and estimation of the corresponding annual effective dose. Environ Eng Sci 32:838–846. https://doi.org/10.1089/ees.2015.0114

    Article  CAS  Google Scholar 

  33. Yii M-W (2019) Measurement of activity concentrations in powdered milk and estimation of the corresponding annual effective dose. J Radioanal Nucl Chem 320:193–199. https://doi.org/10.1007/s10967-019-06460-6

    Article  CAS  Google Scholar 

  34. Priharti W, Samat SB, Yasir MS, Garba NN (2016) Assessment of radiation hazard indices arising from natural radionuclides content of powdered milk in Malaysia. J Radioanal Nucl Chem 307:297–303. https://doi.org/10.1007/s10967-015-4172-8

    Article  CAS  Google Scholar 

  35. Salahel Din K (2020) Assessment of natural and artificial radioactivity in infants’ powdered milk and their associated radiological health risks. J Radioanal Nucl Chem 324:977–981. https://doi.org/10.1007/s10967-020-07170-0

    Article  CAS  Google Scholar 

  36. Mohamed GY, Soliman M, Issa SAM, Mohamed NMA, Al-Abyad M (2021) Trace elements assessment and natural radioactivity levels of infant formulas consumed in Egypt. J Radioanal Nucl Chem 330:1127–1136. https://doi.org/10.1007/s10967-021-08042-x

    Article  CAS  Google Scholar 

  37. Jemii E, Alharbi T (2018) Measurements of natural radioactivity in infant formula and radiological risk assessment. J Radioanal Nucl Chem 315:157–161. https://doi.org/10.1007/s10967-017-5646-7

    Article  CAS  Google Scholar 

  38. Ababneh ZQ, Alyassin AM, Aljarrah KM, Ababneh AM (2010) Measurement of natural and artificial radioactivity in powdered milk consumed in Jordan and estimates of the corresponding annual effective dose. Radiat Protect Dosim 138:278–283. https://doi.org/10.1093/rpd/ncp260

    Article  CAS  Google Scholar 

  39. Ababneh AM, Jaradat B, Samarah QM, Ababneh ZQ (2021) Assessment of the radioactivity of gamma emitters in baby formula for different age groups and baby cereal consumed in Jordan. Radiat Protect Dosim 193:8–15. https://doi.org/10.1093/rpd/ncab015

    Article  CAS  Google Scholar 

  40. El Mestikou R, Jemii E, Mazouz M, Benali M, Ghedira L (2018) Determination of the activity level in powdered milk available in Tunisia and assessment of the radiological risks. J Radioanal Nucl Chem 317:991–996. https://doi.org/10.1007/s10967-018-5965-3

    Article  CAS  Google Scholar 

  41. Sarker MSD, Rahman R, Siraz MMM, Khandaker MU, Yeasmin S (2021) The presence of primordial radionuclides in powdered milk and estimation of the concomitant ingestion dose. Radiat Phys Chem 188:109597. https://doi.org/10.1016/j.radphyschem.2021.109597

    Article  CAS  Google Scholar 

  42. Desideri D, Battisti P, Giardina I, Roselli C, Feduzi L, Gorietti D, Meli MA (2019) Assessment of radioactivity in Italian baby food. Food Chem 279:408–415. https://doi.org/10.1016/j.foodchem.2018.12.030

    Article  CAS  PubMed  Google Scholar 

  43. Tucaković I, Karanović G, Coha I, Pavičić-Hamer D, Grahek Ž (2023) Radionuclides in commercial children’s food consumed in Croatia. Food Control 145:109413. https://doi.org/10.1016/j.foodcont.2022.109413

    Article  CAS  Google Scholar 

  44. Palmer BF (2015) Regulation of Potassium Homeostasis. Clin J Am Soc Nephrol 10:1050–1060. https://doi.org/10.2215/cjn.08580813

    Article  CAS  PubMed  Google Scholar 

  45. ICRP. The 2007 recommendations of the international commission on radiological protection (ICRP). In ICRP publication 103, Ann. ICRP 2007. (2007)

Download references

Acknowledgements

This research was carried out with financial support from the Singapore Food Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xiang Ong.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, J.X., Gan, P., Lee, K.K.M. et al. An assessment of natural and artifical radionuclide content in powdered milk consumed by infants and toddlers in Singapore. J Radioanal Nucl Chem 333, 951–959 (2024). https://doi.org/10.1007/s10967-023-09331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09331-3

Keywords

Navigation