Skip to main content
Log in

Neutron-gamma pulse shape discrimination for EJ301 liquid scintillator based on machine learning

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In fast neutron multiplicity counting measurement, misclassification of γ signals and loss of neutrons introduce significant measurement errors. To address these problems, machine learning (ML) algorithms were employed to improve the n/γ discrimination of liquid scintillators. A dual-scintillator time-of-flight device combined with charge comparison (CC) method was used to select reliable datasets from the D-T neutron generator. Decision Tree, Random Forest, and Back-Propagation Neural Network (BPNN) were developed and compared with the CC method. The CC method and ML algorithms were validated using 137Cs sources. The results showed that the ML algorithms had effective n/γ discrimination capabilities. The BPNN exhibited the highest DERγ (1.26%) and DERn (1.64%) discrimination performance, which reduced neutron loss and γ misclassification. In addition, the trained BPNN was used in practical measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Li S, Qiu S, Zhang Q, Huo Y, Lin H (2016) Fast-neutron multiplicity analysis based on liquid scintillation. Appl Radiat Isot 110:53–58. https://doi.org/10.1016/j.apradiso.2015.12.064

    Article  CAS  PubMed  Google Scholar 

  2. Dolan JL, Flaska M, Poitrasson-Riviere A et al (2014) Plutonium measurements with a fast-neutron multiplicity counter for nuclear safeguards applications. Nucl Inst Methods Phys A 763:565–574. https://doi.org/10.1016/j.nima.2014.06.028

    Article  ADS  CAS  Google Scholar 

  3. Chichester DL, Thompson SJ, Kinlaw MT et al (2015) Statistical estimation of the performance of a fast-neutron multiplicity system for nuclear material accountancy. Nucl Inst Methods Phys A 784:448–454. https://doi.org/10.1016/j.nima.2014.09.027

    Article  ADS  CAS  Google Scholar 

  4. Di Fulvio A, Shin TH, Jordan T et al (2017) Passive assay of plutonium metal plates using a fast-neutron multiplicity counter. Nucl Inst Methods Phys A 855:92–101. https://doi.org/10.1016/j.nima.2017.02.082

    Article  ADS  CAS  Google Scholar 

  5. Di Fulvio A, Shin TH, Basley A et al (2018) Fast-neutron multiplicity counter for active measurements of uranium oxide certified material. Nucl Inst Methods Phys A 907:248–257. https://doi.org/10.1016/j.nima.2018.05.049

    Article  ADS  CAS  Google Scholar 

  6. Hou S, Luo J (2021) Improvement of plutonium sample property measurement based on fast neutron multiplicity counting. Ann Nucl Energy 156:108219. https://doi.org/10.1016/j.anucene.2021.108219

    Article  CAS  Google Scholar 

  7. Zhou H, Lin H, Liu G, Li J, Liang Q, Zhao Y (2015) A neutron multiplicity analysis method for uranium samples with liquid scintillators. Nucl Inst Methods Phys A 797:70–76. https://doi.org/10.1016/j.nima.2015.06.029

    Article  ADS  CAS  Google Scholar 

  8. Shin TH, Di Fulvio A, Clarke SD, Chichester DL, Pozzi SA (2019) Prompt fission neutron anisotropy in low-multiplying subcritical plutonium metal assemblies. Nucl Inst Methods Phys A 915:110–115. https://doi.org/10.1016/j.nima.2018.09.085

    Article  ADS  CAS  Google Scholar 

  9. Shin TH, Feng PL, Carlson JS, Clarke SD, Pozzi SA (2019) Measured neutron light-output response for trans-stilbene and small-molecule organic glass scintillators. Nucl Inst Methods Phys A 939:36–45. https://doi.org/10.1016/j.nima.2019.05.036

    Article  ADS  CAS  Google Scholar 

  10. Fobar D, Phillips L, Wilhelm A et al (2021) Considerations for training an artificial neural network for particle type identification. IEEE Trans Nucl Sci 68(9):2350–2357. https://doi.org/10.1109/TNS.2021.3103658

    Article  ADS  CAS  Google Scholar 

  11. Zhang ZH, Hu CY, Fan XY et al (2019) A direct method of nuclear pulse shape discrimination based on principal component analysis and support vector machine. J Instrum 14:P06020. https://doi.org/10.1088/1748-0221/18/01/P01021

    Article  CAS  Google Scholar 

  12. Kaplan AD, Blair B, Chen C et al (2019) A neutron-gamma pulse shape discrimination method based on pure and mixed sources. Nucl Inst Methods Phys A 919:36–41. https://doi.org/10.1016/j.nima.2018.11.136

    Article  ADS  CAS  Google Scholar 

  13. Owen RB (1958) The decay times of organic scintillators and their application to the discrimination between particles of differing specific ionization. IRE Trans Nucl Sci 5:198–201. https://doi.org/10.1109/TNS2.1958.4315657

    Article  CAS  Google Scholar 

  14. Brooks FD (1959) A scintillation counter with neutron and gamma-ray discriminators. Nucl Inst Methods 4:151–163. https://doi.org/10.1016/0029-554X(59)90067-9

    Article  ADS  CAS  Google Scholar 

  15. Adams JM, White G (1978) A versatile pulse shape discriminator for charged particle separation and its application to fast neutron time-of-flight spectroscopy. Nucl Inst Methods 156:459–476. https://doi.org/10.1016/0029-554x(78)90746-2

    Article  ADS  CAS  Google Scholar 

  16. Alexandei TK, Goulding FS (1961) An amplitude-insensitive system that distinguishes pulses of different shapes. Nucl Inst Methods Phys A 13:244–246. https://doi.org/10.1016/0029-554X(61)90198-7

    Article  ADS  Google Scholar 

  17. Kaschuck Y, Esposito B (2005) Neutron/γ-ray digital pulse shape discrimination with organic scintillators. Nucl Inst Methods Phys A 551:420–428. https://doi.org/10.1016/j.nima.2005.05.071

    Article  ADS  CAS  Google Scholar 

  18. Cester D, Lunardon M, Nebbia G, Stevanato L, Viesti G, Petrucci S, Tintori C (2014) Pulse shape discrimination with fast digitizers. Nucl Inst Methods Phys A 748:33–38. https://doi.org/10.1016/j.nima.2014.02.032

    Article  ADS  CAS  Google Scholar 

  19. Liao C, Yang H (2014) n/γ Pulse shape discrimination comparison of EJ301 and EJ339A liquid scintillation detectors. Ann Nucl Energy 69:57–61. https://doi.org/10.1016/j.anucene.2014.01.039

    Article  CAS  Google Scholar 

  20. Simms LM, Blair B, Ruz J, Wurtz R, Kaplan AD, Glenn A (2018) Pulse discrimination with a Gaussian mixture model on an FPGA. Nucl Inst Methods Phys A 900:1–7. https://doi.org/10.1016/j.nima.2018.05.039

    Article  ADS  CAS  Google Scholar 

  21. Savran D, Löher B, Miklavec M, Vencelj M (2010) Pulse shape classification in liquid scintillators using the fuzzy c-means algorithm. Nucl Inst Methods Phys A 624:675–683. https://doi.org/10.1016/j.nima.2010.09.130

    Article  ADS  CAS  Google Scholar 

  22. Yu X, Zhu J, Lin S, Wang L, Xing H, Zhang C, Xia Y, Liu S, Yue Q, Wei W, Du Q, Tang C (2015) Neutron–gamma discrimination based on the support vector machine method. Nucl Inst Methods Phys A 777:80–84. https://doi.org/10.1016/j.nima.2014.12.087

    Article  ADS  CAS  Google Scholar 

  23. Garankin J, Plukis A (2022) Application of artificial neural network for the ionizing radiation particle identification by the plastic scintillation detector response. Lith J Phys 62:171–178. https://doi.org/10.3211/lith.87485

    Article  Google Scholar 

  24. Söderström PA, Jaworski G, Valiente Dobón JJ et al (2019) Neutron detection and γ-ray suppression using artificial neural networks with the liquid scintillators BC-501A and BC-537. Nucl Inst Methods Phys A 916:238–245. https://doi.org/10.1016/j.nima.2018.11.122

    Article  ADS  CAS  Google Scholar 

  25. Griffiths J, Kleinegesse S, Saunders D, Taylor R, Vacheret A (2020) Pulse shape discrimination and exploration of scintillation signals using convolutional neural networks. Mach Learn Sci Technol 1:045022. https://doi.org/10.1088/2632-2153/abb781

    Article  Google Scholar 

  26. Zhao K, Feng C, Wang S, Shen Z, Zhang K, Liu S (2023) n/γ discrimination for CLYC detector using a one-dimensional convolutional Neural Network. J Instrum 18:P01021. https://doi.org/10.1088/1748-0221/18/01/p01021

    Article  Google Scholar 

  27. Wurtz R, Blair B, Chen C et al (2018) Methodology and performance comparison of statistical learning pulse shape classifiers as demonstrated with organic liquid scintillator. Nucl Inst Methods Phys A 901:46–55. https://doi.org/10.1016/j.nima.2018.06.001

    Article  ADS  CAS  Google Scholar 

  28. Zhang CX, Lin ST, Zhao JL et al (2016) Discrimination of neutrons and γ-rays in liquid scintillator based on Elman neural network. Chin Phys C 40(8):086204. https://doi.org/10.1088/1674-1137/40/8/086204

    Article  ADS  CAS  Google Scholar 

  29. Maedgen P, Wellons B, Prasad S et al (2022) Improving pulse shape discrimination in organic scintillation detectors by understanding underlying data structure. Nucl Technol 208(10):1522–1539. https://doi.org/10.1080/00295450.2022.2045533

    Article  ADS  Google Scholar 

  30. Abdelhakim A, Elshazly E (2023) Efficient pulse shape discrimination using scalogram image masking and decision tree. Nucl Inst Methods Phys A 1050:168140. https://doi.org/10.1016/J.NIMA.2023.168140

    Article  CAS  Google Scholar 

  31. Jollans L, Boyle R, Artiges E et al (2019) Quantifying performance of machine learning methods for neuroimaging data. Neuroimage 199:351–365. https://doi.org/10.1016/j.neuroimage.2019.05.082

    Article  PubMed  Google Scholar 

  32. Zhang Z, Hu C, Zhang Y et al (2019) The combined application of principal component analysis and decision tree in nuclear pulse shape discrimination. Nucl Inst Methods Phys A 943:162425. https://doi.org/10.1016/j.nima.2019.162425

    Article  CAS  Google Scholar 

  33. Priyam A, Abhijeeta GR, Rathee A et al (2013) Comparative analysis of decision tree classification algorithms. Int J Eng Technol 3(2):334–3370. https://doi.org/10.1007/978-981-10-6747-1_4

    Article  Google Scholar 

  34. Song YY, Ying LU (2015) Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry 27(2):130. https://doi.org/10.11919/j.issn.1002-0829.215044

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26(1):217–222. https://doi.org/10.1080/01431160412331269698

    Article  Google Scholar 

  36. Rigatti SJ (2017) Random forest. J Insur Med 47(1):31–39. https://doi.org/10.17849/insm-47-01-31-39.1

    Article  PubMed  Google Scholar 

  37. Biau G, Scornet E (2016) A random forest guided tour. TEST 25:197–227. https://doi.org/10.1007/s11749-016-0488-0

    Article  MathSciNet  Google Scholar 

  38. Ronchi E, Söderström PA, Nyberg J, Andersson Sundén E, Conroy S, Ericsson G, Hellesen C, Gatu Johnson M, Weiszflog M (2009) An artificial neural network based neutron–gamma discrimination and pile-up rejection framework for the BC-501 liquid scintillation detector. Nucl Inst Methods Phys A 610:534–539. https://doi.org/10.1016/j.nima.2009.08.064

    Article  ADS  CAS  Google Scholar 

  39. Cao Z, Miller LF, Buckner M (1998) Implementation of dynamic bias for neutron–photon pulse shape discrimination by using neural network classifiers. Nucl Inst Methods Phys A 416(2–3):438–445. https://doi.org/10.1016/s0168-9002(98)00654-8

    Article  ADS  CAS  Google Scholar 

  40. Liu HR, Cheng YX, Zuo Z et al (2021) Discrimination of neutrons and gamma rays in plastic scintillator based on pulse-coupled neural network. Nucl Sci Tech 32(8):82. https://doi.org/10.1088/1674-1137/40/8/086204

    Article  CAS  Google Scholar 

  41. Kim J, Lim KT, Kim J et al (2019) Quantitative analysis of NaI (Tl) gamma-ray spectrometry using an artificial neural network. Nucl Inst Methods Phys A 944:162549. https://doi.org/10.1016/j.nima.2019.162549

    Article  CAS  Google Scholar 

  42. Madhiarasan M, Deepa SN (2017) Comparative analysis on hidden neurons estimation in multi layer perceptron neural networks for wind speed forecasting. Artif Intell Rev 48:449–471. https://doi.org/10.1007/s10462-016-9506-6

    Article  Google Scholar 

  43. Liu G, Aspinall MD, Ma X, Joyce MJ (2009) An investigation of the digital discrimination of neutrons and γ rays with organic scintillation detectors using an artificial neural network. Nucl Inst Methods Phys A 607:620–628. https://doi.org/10.1016/j.nima.2009.06.027

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was a project supported by the National Natural Science Foundation of China (11975121) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX22_0354).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbao Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Cheng, W., Jia, W. et al. Neutron-gamma pulse shape discrimination for EJ301 liquid scintillator based on machine learning. J Radioanal Nucl Chem 333, 905–916 (2024). https://doi.org/10.1007/s10967-023-09327-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09327-z

Keywords

Navigation