Skip to main content
Log in

Numerical investigations on radon migration from building walls into indoor atmosphere under natural convection

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radon exhaled from building materials infiltrates the indoor atmosphere and is transported into the indoor space by buoyancy-driven airflow. This paper investigated the dynamic coupling of radon concentration in the building wall area and indoor space. An indoor radon migration model under natural convection caused by temperature gradient was established. The radon exhalation rate, average Nusselt number, and average Sherwood number at the building wall and indoor space interface were quantified. The mechanism of radon migration from building materials into the indoor atmosphere was elucidated. Results show that natural convection influences the flow of indoor air and the radon concentration distribution, which increases with the increase of temperature gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study obtained from the corresponding author (fengshengyang@usc.edu.cn) upon reasonable request.

References

  1. Frumkin H, Samet J (2001) Radon CA-A cancer. J Clin 51:337–344.

    CAS  Google Scholar 

  2. Lubin JH, Boice JD, Edling C et al (1995) Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. J Natl Cancer Inst 87:817–827. https://doi.org/10.1093/jnci/87.11.817

    Article  CAS  PubMed  Google Scholar 

  3. Feng SY, Wang HQ, Cui Y et al (2019) Monte Carlo method for determining radon diffusion coefficients in porous media. Radiat Meas 126: 106130. https://doi.org/10.1016/j.radmeas.2019.106130

    Article  CAS  Google Scholar 

  4. Borgoni R, De FD, De BD, Tzavidis N (2014) Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter ? J Environ Radioact 138:227–237. https://doi.org/10.1016/j.jenvrad.2014.08.022

    Article  CAS  PubMed  Google Scholar 

  5. Appleton JD (2007) Radon: sources, health risks, and hazard mapping. A J Hum Environ 36:85–89. https://doi.org/10.1579/0044-7447(2007)36[85:RSHRAH]2.0.CO;2

    Article  CAS  Google Scholar 

  6. Huang D, Liu Y, Liu YH et al (2022) Identification of sources with abnormal radon exhalation rates based on radon concentrations in underground environments. Sci Total Environ 807:150800. https://doi.org/10.1016/j.scitotenv.2021.150800

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Liang KQ, Hong CS, Luo J et al (2022) Radon attenuation characteristics of compacted soil layer for uranium mill tailings pond subjected to drying-wetting cycles. Sci Total Environ 851:158184. https://doi.org/10.1016/j.scitotenv.2022.158184

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Popovic D, Todorovic D (2006) Radon indoor concentrations and activity of radionuclides in building materials in Serbia. FACTA Univ 4:11–20. https://doi.org/10.1093/oxfordjournals.rpd.a031533

    Article  Google Scholar 

  9. Papachristodoulou C, Ioannides K, Spathis S (2007) The effect of moisture content on radon diffusion through soil: assessment in laboratory and field experiments. Health Phys 92:257–264. https://doi.org/10.1097/01.HP.0000248147.46038.bc

    Article  CAS  PubMed  Google Scholar 

  10. Borgoni R, Tritto V, Bigliotto C, de Bartolo D (2011) A geostatistical approach to assess the spatial association between indoor radon concentration, geological features and building characteristics: the case of Lombardy, Northern Italy. Int J Environ Res Public Health 8:1420–1440. https://doi.org/10.3390/ijerph8051420

    Article  PubMed  PubMed Central  Google Scholar 

  11. Darby S, Hill D, Auvinen A et al (2005) Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. Br Med J 330:223–226. https://doi.org/10.1136/bmj.38308.477650.63

    Article  CAS  Google Scholar 

  12. Leech JA, Nelson WC, Burnett RT et al (2002) It’s about time: A comparison of Canadian and American time-activity patterns. J Expo Anal Environ Epidemiol 12:427–432. https://doi.org/10.1038/sj.jea.7500244

    Article  PubMed  Google Scholar 

  13. Field RW, Steck DJ, Smith BJ et al (2001) The Iowa radon lung cancer study - phase I: residential radon gas exposure and lung cancer. Sci Total Environ 272:67–72. https://doi.org/10.1016/S0048-9697(01)00666-0

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Xu DQ, Shang B, Cao ZJ (2007) Investigation of key indoor air pollutants in residence in part of the cities in China. J Hyg Res 36:473–476. https://doi.org/10.3969/j.issn.1000-8020.2007.04.019

    Article  CAS  Google Scholar 

  15. Shang B, He QH, Wang ZY, Zhu CS (2003) Studies of indoor action level of radon in China. Chin J Radiol Med Prot 23:462–465.

    Google Scholar 

  16. Yao YP, Chen B, Zhuo WH (2021) Reanalysis of residential radon surveys in China from 1980 to 2019. Sci Total Environ 757:143767. https://doi.org/10.1016/j.scitotenv.2020.143767

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Yan W, Feng YL, Yu MG, Chao YH et al (2012) Comprehensive utilization of fly ash. Adv Mater Res 518–523:701–704. https://doi.org/10.4028/www.scientific.net/AMR.518-523.701

    Article  Google Scholar 

  18. Jin SX, Zhao ZH, Jiang SF et al (2021) Comparison and summary of relevant standards for comprehensive utilization of fly ash at home and abroad. IOP Conf Ser Earth Environ Sci 621:1–5. https://doi.org/10.1088/1755-1315/621/1/012006

    Article  Google Scholar 

  19. Zhao CF, Lu XW, Li N, Yang G (2012) Natural radioactivity measurements of building materials in Baotou, China. Radiat Prot Dosim 152:434–437. https://doi.org/10.1093/rpd/ncs054

    Article  CAS  Google Scholar 

  20. Lu XW, Yang G, Ren CH (2012) Natural radioactivity and radiological hazards of building materials in Xianyang, China. Radiat Phys Chem 81:780–784. https://doi.org/10.1016/j.radphyschem.2012.02.043

    Article  ADS  CAS  Google Scholar 

  21. Morin J-P, Seidel J-L, Monnin M (1993) A tri-dimensional model for radon transport in a porous medium. Nucl Tracks Radiat Meas 22:415–418. https://doi.org/10.1016/0969-8078(93)90097-N

    Article  Google Scholar 

  22. Urosevic V, Nikezic D, Vulovic S (2008) A theoretical approach to indoor radon and thoron distribution. J Environ Radioact 99:1829–1833. https://doi.org/10.1016/j.jenvrad.2008.07.010

    Article  CAS  PubMed  Google Scholar 

  23. Vasilyev AV, Zhukovsky MV (2013) Determination of mechanisms and parameters which affect radon entry into a room. J Environ Radioact 124:185–190. https://doi.org/10.1016/j.jenvrad.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  24. Baltrenas P, Grubliauskas R, Danila V (2020) Seasonal variation of indoor radon concentration levels in different premises of a university building. Sustain 12:566. https://doi.org/10.3390/su12156174

    Article  CAS  Google Scholar 

  25. Rabi R, Oufni L (2017) Study of radon dispersion in typical dwelling using CFD modeling combined with passive-active measurements. Radiat Phys Chem 139:40–48. https://doi.org/10.1016/j.radphyschem.2017.04.012

    Article  ADS  CAS  Google Scholar 

  26. Chauhan N, Chauhan RP, Joshi M et al (2014) Study of indoor radon distribution using measurements and CFD modeling. J Environ Radioact 136:105–111. https://doi.org/10.1016/j.jenvrad.2014.05.020

    Article  CAS  PubMed  Google Scholar 

  27. Cavallo A, Gadsby K, Reddy TA (1996) Comparison of natural and forced ventilation for radon mitigation in houses. Environ Int 22:1073–1078. https://doi.org/10.1016/S0160-4120(96)00221-8

    Article  Google Scholar 

  28. Xie D, Wu YX, Wang CH et al (2021) A study on the three-dimensional unsteady state of indoor radon diffusion under different ventilation conditions. Sustain Cities Soc 66:102599. https://doi.org/10.1016/j.scs.2020.102599

    Article  Google Scholar 

  29. Demoury C, Ielsch G, Hemon D et al (2013) A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France. J Environ Radioact 126:216–225. https://doi.org/10.1016/j.jenvrad.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  30. Pampuri L, Caputo P, Valsangiacomo C (2018) Effects of buildings’ refurbishment on indoor air quality. Results of a wide survey on radon concentrations before and after energy retrofit interventions. Sustain Cities Soc 42:100–106. https://doi.org/10.1016/j.scs.2018.07.007

    Article  Google Scholar 

  31. Sahoo BK, Sapra BK, Gaware JJ et al (2011) A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples. Sci Total Environ 409:2635–2641. https://doi.org/10.1016/j.scitotenv.2011.03.031

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Zhang Z, Zhu MA, Zhang YX (2010) Radon protection technology of underground engineering and human environment. Atomic Energy Press.

  33. Ishimori Y, Lange K, Martin P, et al (2013) Measurement and calculation of radon releases from NORM residues. International Atomic Energy Agency (IAEA).

  34. Rogers VC, Nielson KK (1991) Correlations for predicting air permeabilities and Rn-222 diffusion coefficients of soils. Health Phys 61:225–230. https://doi.org/10.1097/00004032-199108000-00006

    Article  CAS  PubMed  Google Scholar 

  35. Musavi M, Negarestani A (2017) Processing the spike- like radon anomaly exhalation from the soil surface by electrical model. Appl Radiat Isot 125:4–8. https://doi.org/10.1016/j.apradiso.2017.03.022

    Article  CAS  Google Scholar 

  36. Feng SY, Wang HQ, Cui Y et al (2020) Fractal discrete fracture network model for the analysis of radon migration in fractured media. Comput Geotech 128:103810. https://doi.org/10.1016/j.compgeo.2020.103810

    Article  Google Scholar 

  37. Rabi JA, Mohamad AA (2006) Parametric modelling and numerical simulation of natural-convective transport of radon-222 from a phosphogypsum stack into open air. Appl Math Model 30:1546–1560. https://doi.org/10.1016/j.apm.2005.08.001

    Article  Google Scholar 

  38. Feng SY, Li C, Cui Y et al (2021) Novel method for measuring temperature-dependent diffusion coefficient of radon in porous media. Appl Radiat Isot 169:56656. https://doi.org/10.1016/j.apradiso.2020.109506

    Article  CAS  Google Scholar 

  39. Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33:161–174. https://doi.org/10.1080/00401706.1991.10484804

    Article  Google Scholar 

  40. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280. https://doi.org/10.1016/S0378-4754(00)00270-6

    Article  MathSciNet  Google Scholar 

  41. Weltens H, Bressler H, Terres F et al (1993) Optimisation of catalytic converter gas flow distribution by CFD prediction. SAE Tech Pap. https://doi.org/10.4271/930780

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number 11705083), Natural Science Foundation of Hunan Province of China (grant number 2023JJ30494), Scientific Research Fund of Hunan Provincial Education Department (grant number 22A0296), Foundation of Equipment Pre-research Area (grant number 80927015101) and Science and Technology Plan Project of Hengyang City (grant number 202150063436).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Shengyang Feng.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Liu, Y., Chen, P. et al. Numerical investigations on radon migration from building walls into indoor atmosphere under natural convection. J Radioanal Nucl Chem 333, 651–663 (2024). https://doi.org/10.1007/s10967-023-09319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09319-z

Keywords

Navigation