Skip to main content
Log in

Gamma radiation-assisted functionalization of flax fibers for diversified applications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study the flax fiber surface, which has gained immense attention, is modified by grafting methacrylamide using gamma radiation. The monomer and inhibitor concentrations, irradiation dose and dose rate have been optimized to obtain the desired grafting yield (55 wt%). The Fourier transform infrared spectroscopy confirms the attachment of methacrylamide onto flax fiber. The impact of grafting on useful properties of fiber is further investigated. The mechanical properties are found to be well-maintained. The thermal stability of the modified flax fiber is improved by 50 °C. No post-grafting damage to the fiber is observed from scanning electron microscopic study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Girijappa YGT, Rangappa SM, Parameswaranpillai J, Siengchin S (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front Mater 6:226

    Article  ADS  Google Scholar 

  2. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  3. Hebeish A, Guthrie JT (1981) The chemistry and technology of cellulosic copolymers. Springer, Berlin

    Book  Google Scholar 

  4. Elfaleh I, Abbassi F, Habibi M, Ahmad F, Guedri M, Nasri M, Garnier C (2023) A comprehensive review of natural fibers and their composites: an eco-friendly alternative to conventional materials. Results Eng 19:101271

    Article  CAS  Google Scholar 

  5. Huner U (2017) Effect of chemical surface treatment on flax-reinforced epoxy composite. J Nat Fibers 15:808–821

    Article  Google Scholar 

  6. Preisner M, Wojtasik W, Kulma A, Zuk M (2014) Flax fiber. Kirk-Othmer Encyclopedia Chem Technol 4:1–32

    Google Scholar 

  7. Titok V, Leonteive V, Yurenkova S, Tatiana N, Barannikova T, Khotyleva L (2013) Infrared spectroscopy of fiber flax. J Nat Fibers 7:61–69

    Article  Google Scholar 

  8. Fillat A, Gallardo O, Vidal T, Pastor FIJ, Diaz P, Roncero MB (2012) Enzymatic grafting of natural phenols to flax fibres: development of antimicrobial properties. Carbohydr Polym 87:146–152

    Article  CAS  PubMed  Google Scholar 

  9. Ajith A, Xian G, Li H, Sherief Z, Thomas S (2015) Surface grafting of flax fibres with hydrous zirconia nanoparticles and the effects on the tensile and bonding properties. J Compos Mater 50:1–9

    Google Scholar 

  10. Kaith BS, Kalia S (2007) Grafting of flax fiber (Linum usitatissimum) with vinyl monomers for enhancement of properties of flax-phenolic composites. Polym J 39:1319–1327

    Article  CAS  Google Scholar 

  11. Wang A, Xian G, Li H (2019) Effects of fiber surface grafting with nano-clay on the hydrothermal ageing behaviors of flax fiber/epoxy composite plates. Polymers 11:1278–1295

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sutirman ZA, Sanagi MM, Naim AA, Karim KHA, Ibrahim WAW (2017) Ammonium persulfate-initiated graft copolymerization of methacrylamide onto chitosan: synthesis Characterization and Optimization. Sains Malays 46:2433–2440

    Article  CAS  Google Scholar 

  13. Zhag X, Liang J, Chen Z, Donley C, Liu Y, Cheng G (2019) Chemical modifcation of Bombyx mori silk fbers with vinyl groups for thiol-ene click chemistry. BMC chem 13:114

    Article  Google Scholar 

  14. Zoccola M, Boschi A, Arosio C, Mossotti R, Innocenti R, Freddi G (2011) Silk grafting with methacrylamide: a near-infrared spectroscopy study. J Appl Polym Sci 120:253–262

    Article  CAS  Google Scholar 

  15. Sadeghi M, Ghasemi N, Soliemani F (2012) Graft copolymerization methacrylamide monomer onto carboxymethyl cellulose in homogeneous solution and optimization of effective parameters. World Appl Sci J 16:119–125

    CAS  Google Scholar 

  16. Pavoni E, Tozzi S, Tsukada M, Taddei P (2016) Structural study on methacrylamide-grafted tussah silk fibroin fibres. Int J Biol Macromol 88:196–205

    Article  CAS  PubMed  Google Scholar 

  17. Umar S, Sanagi MM, Salisu A, Ibrahim WAW, Kairil J, Karim A, Keyon ASA (2016) Preparation and characterization of starch grafted with methacrylamide using ammonium persulphate initiator. Mater Lett 185:173–176

    Article  CAS  Google Scholar 

  18. Wo O, Chen S, Liu H (2014) Effect of surface chemistry of polyethyleneimine grafted polypropylene fiber on its CO2 adsorption. RSC Adv 4:27176–27183

    Article  ADS  Google Scholar 

  19. Rosace G, Massafra MR (2008) Marking of cellulose yarn by vinyl monomer grafting. Text Res J 78:28–36

    Article  CAS  Google Scholar 

  20. Purohit P, Bhatt A, Mittal RK, Abdellattif MH, Farghaly TA (2023) Polymer grafting and its chemical reactions. Front Bioeng Biotechnol. 10:1044927–1044949

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hamdalla TA, Nafee SS (2015) Bragg wavelength shift for irradiated polymer fiber bragg grating. Opt Laser Technol 74:167–172

    Article  ADS  CAS  Google Scholar 

  22. Kuan I, Sharma N, Kumari V (2013) Modification of fiber properties through grafting of acrylonitrile to rayon by chemical and radiation methods. J Adv Res 4:547–557

    Article  Google Scholar 

  23. Jha A, Thite A, Bhardwaj YK, Pant HJ, Ray Chowdhury S (2022) Radiation assisted development of linear low-density polyethylene/flax fibre composites by designing interface. J Compos Mater 56:4259–4273

    Article  CAS  Google Scholar 

  24. Jha A, Ray Chowdhury S, Krishnanand K, Sharma KSS (2015) Radiation-assisted controlled grafting and reaction parameter optimization of an industrially important polyolefin elastomer (POE). Polym Adv Technol 27:889–897

    Article  Google Scholar 

  25. Ray Chowdhury S, Jha A, Manna U, Sharma KSS (2016) Designing a single superabsorbent for separating oil from both layered as well as micron/submicron size emulsified oil/water mixtures by gamma radiation assisted grafting. RSC Adv 6:26086–26095

    Article  ADS  Google Scholar 

  26. Hamdalla TA (2013) Theoretical and artificial neural network modeling for the output power of irradiated erbium doped fiber amplifier. Opt Laser Technol 49:264–267

    Article  ADS  CAS  Google Scholar 

  27. Woods RJ, Pikaev AK (1994) Applied radiation chemistry: radiation processing. Wiley, New York, pp 171–173

    Google Scholar 

  28. Misra BN, Kaur I, Kapoor B, Lakhanpal S (1992) Gamma-radiation induced graft copolymerization of vinyl monomer onto rayon. Indian J Fibre Text Res 17:107–110

    CAS  Google Scholar 

  29. Kumar P, Choonara YE, Toit LC, Modi G, Naidoo D, Pillay V (2012) Novel high-viscosity polyacrylamidated chitosan for neural tissue engineering: fabrication of anisotropic neurodurable scaffold via molecular disposition of persulfate-mediated polymer slicing and complexation. Int J Mol Sci 13:13966–13984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jha A, Thite A, Bhardwaj YK, Pant HJ, Ray Chowdhury S (2023) Radiation assisted hydrophobization of jute fiber. J Appl Polym Sci 140:e54690

    Article  CAS  Google Scholar 

  31. Derkaoui S, Belbachir M, Zeggai FZ (2019) A green catalyst “maghnite Na+” for synthesis and anionic polymerization of methacrylamide. Int J Sci Res Eng Technol 8:1–4

    Google Scholar 

  32. Bourlinos AB, Ray Chowdhury S, Jiang DD, An YU, Zhang Q, Archer LA, Giannelis EP (2004) Layered organosilicate nanoparticles with liquidlike behavior. Small 1:80–82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhendu Ray Chowdhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, R., Das, P. & Chowdhury, S.R. Gamma radiation-assisted functionalization of flax fibers for diversified applications. J Radioanal Nucl Chem 333, 687–694 (2024). https://doi.org/10.1007/s10967-023-09310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09310-8

Keywords

Navigation