Skip to main content
Log in

On the radiation-induced polymerization of indene: from laboratory study to astrochemical implications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The radiation-induced polymerization of indene with a γ radiation source was studied at different dose rates (1, 2, 4, 6 kGy/h) and absorbed doses up to 400 kGy. The polymerization rate was determined through the thermogravimetric analysis and the spectrophotometric analysis of the irradiated indene solutions. With the two complementary methods the polymerization rates were determined for each dose rate. A mixed polymerization mechanism was ascertained involving either free radicals but also cations. In fact, the mixed mechanism was suggested as well by the n = 0.84 exponent of the dose rate in the polymerization kinetics equation and by the value of the radiation chemical yield Gp = G(−M) ≈ 103 molecules/100 eV. The infrared spectrum of the radiation-polymerized indene is analogous to the spectrum of a reference TiCl4-polyindene. However, the FT-IR spectrum of the former shows a couple of better defined and sharper infrared bands with respect to the latter, indicating a better structural regularity for the radio-polyindene. Since indene has been claimed as one of the potential polycyclic aromatic hydrocarbons (PAHs) present in the interstellar medium, our results suggest that it is likely that indene should be accompanied by -polyindene because of the monomer is very sensitive to the high energy radiation-induced polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, [F.C.].

References

  1. Burkhardt AM, Lee KLK, Changala PB, Shingledecker CN, Cooke IR, Loomis RA, Wei H, Charnley SB, Herbst E, McCarthy BA (2021) Discovery of the pure polycyclic aromatic hydrocarbon indene (c-C9H8) with GOTHAM observations of TMC-1. Astrophys J Lett 913:L18

    Article  CAS  ADS  Google Scholar 

  2. Cernicharo J, Agúndez M, Cabezas C, Tercero B, Marcelino N, Pardo JR, De Vicente P (2021) Pure hydrocarbon cycles in TMC-1: Discovery of ethynyl cyclopropenylidene, cyclopentadiene, and indene. Astron Astrophys 649:L15

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Sita ML, Changala PB, Xue C, Burkhardt AM, Shingledecker CN, Lee KLK, Loomis RA, Momjan E, Siebert MA, McGuire BA (2022) Discovery of interstellar 2-cyanoindene (2–C9H7CN) in GOTHAM observations of TMC-1. Astrophys J Lett 938:L12

    Article  ADS  Google Scholar 

  4. Doddipatla S, Galimova GR, Wei H, Thomas AM, He C, Yang Z, Morozov AN, Shingledecker CN, Mebel AM, Kaiser RI (2021) Low-temperature gas-phase formation of indene in the interstellar medium. Sci Adv 7:eabd4044

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. García-Hernández DA, Barzaga R, Manchado A, Cataldo F (2023) Fullerene-indene adducts (ICMA & ICBA) in an astrochemical perspective part 1: chemical thermodynamics, stability and electronic absorption spectroscopy. Fullerenes Nanot Carbon Nanostruct 31:897–905

    Article  ADS  Google Scholar 

  6. García-Hernández DA, Barzaga R, Manchado A, Cataldo F (2023) Fullerene-indene adducts (ICMA & ICBA) in an astrochemical perspective. Part 2: FT-IR spectroscopy from −180 to + 250 °C. Fullerenes Nanot Carbon Nanostruct 31:989–998

    Article  ADS  Google Scholar 

  7. Nanda AK, Kishore K (2001) Autocatalytic oxidative polymerization of indene by cobalt porphyrin complex and kinetic investigation of the polymerization of styrene. Macromol 34:1600–1605

    Article  CAS  ADS  Google Scholar 

  8. Prosser HJ, Young RN (1975) Cationic polymerization of indene and acenaphthylene. Eur Polym J 11:403–408

    Article  CAS  Google Scholar 

  9. Givehchi M, Tardi M, Polton A, Sigwalt P (2000) Influence of monomer concentration and dielectric constant on transfer reactions in the carbocationic polymerization of indene. Macromol 33:710–716

    Article  CAS  ADS  Google Scholar 

  10. Luijendijk N (1962) The polymerization of indene initiated by peroxides and gamma radiation; Thesis, only abstract available. https://www.osti.gov/biblio/4830574 accessed September 30, 2023.

  11. Chapiro A (1962) Radiation chemistry of polymeric systems. Wiley-Interscience, New York

    Google Scholar 

  12. Chapiro A (1974) Cationic polymerizations initiated by high energy radiation. Makromol Chem 175:1181–1175

    Article  CAS  Google Scholar 

  13. Woods RJ, Pikaev AK (1993) Applied radiation chemistry: radiation processing. Wiley-Interscience, New York

    Google Scholar 

  14. Mehnert R (1993) In: Elvers B et al. (eds) Ullmann’s Encyclopedia of Industrial Chemistry. VCH, Weinheim, A22: 471–476.

  15. Wojnarovits L (2011). In: Vértes A, Nagy S, Klencsár Z, Lovas RG, Rösch F (eds) Handbook of Nuclear Chemistry. Springer, Berlin

    Google Scholar 

  16. Ivanov VS (2023) Radiation Chemistry of polymers. CRC Press, Taylor & Francis group, Boca Raton, FL

  17. Leonard J (1999). In: Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR (eds) Polymer Handbook. Wiley, New York

    Google Scholar 

  18. Van Krevelen DW, Te Nijenhuis K (2009) Properties of Polymers: Their Correlation with Chemical Structure. Their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier, Amsterdam

    Book  Google Scholar 

  19. Baccaro S, Cemmi A, Di Sarcina I, Ferrara G (2019) Gamma irradiation Calliope facility at ENEA – Casaccia Research Centre. Italy, Rome

    Google Scholar 

  20. Cheradame H, Mazza M, Hung NA, Sigwalt P (1973) Polymerisation cationique de l’indene amorcee par le tetrachlorure de titane-I Influence des impuretes du solvant, le chlorure de methylene, et effets cocatalytiques de l’eau et de l’acide chlorhydrique. Eur Polym J 9:375–384

    Article  CAS  Google Scholar 

  21. Ionova EI, Lyapkov AA, Bondaletov VG, Bondaletova LI, Petrenko TV (2009) Indene polymerization under the action of titanium tetrachloride. Coke Chem 52:496–500

    Article  Google Scholar 

  22. Milinchuk VK, Tupikov VI (1989) Organic radiation chemistry handbook. Ellis Harwood, Chichester

    Google Scholar 

  23. Hayashi K (1980) Radiation and photo-induced ionic polymerization. Polym J 12:583–596

    Article  CAS  Google Scholar 

  24. Eckhardt P, Heinze HO (1959) Beiträge zur chemie und struktur der cumaronharze unter berücksichtigung der IR-spektroskopie und der gaschromatographie. Fresenius’ Zeit Analytische Chem 170:166–176

    Article  CAS  Google Scholar 

  25. Noskov AM (1969) IR spectra and structure of polymers of indene and coumarone. J Appl Spectrosc 10:403–406

    Article  ADS  Google Scholar 

  26. Natta G, Farina M, Peraldo M, Bressan G (1961) Asymmetric synthesis of optically active di-isotactic polymers from cyclic monomers. Makromol Chem 43:68–75

    Article  CAS  Google Scholar 

  27. Goel S, Mazumdar NA, Gupta A (2010) One-dimensional nanofibers of polyindene: synthesis and characterization. J Polym Res 17:639–645

    Article  CAS  Google Scholar 

  28. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and raman characteristic fequencies of organic molecules. Academic Press, San Diego

    Google Scholar 

  29. Cataldo F, Gobbino M, Ursini O, Angelini G (2007) A Study on the optically active polymer poly-β-pinene. J Macromol Sci Part A Pure Appl Chem 44:1225–1234

    Article  CAS  Google Scholar 

  30. Cataldo F, Ragni P, Ursini O (2007) Radiation-induced polymerization of β(−) pinene: a further insight. J Radioanal Nucl Chem 272:29–36

    Article  CAS  Google Scholar 

  31. Cataldo F, Angelini G, Capitani D, Gobbino M, Ursini O, Forlini F (2008) Determination of the chemical structure of poly-β (-)-pinene by NMR spectroscopy. J Macromol Sci Part A Pure Appl Chem 45:839–849

    Article  CAS  Google Scholar 

  32. Cataldo F, Ursini O, Angelini G, Ragni P (2009) Radiation-induced inclusion polymerization of β (−) pinene in deoxycholic acid. J Macromol Sci Part A: Pure Appl Chem 46:493–502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from State Research Agency (AEI) of the Spanish Ministry of Science and Innovation (MICINN) under grant PID2020-115758GB-I00. This article is based upon work from COST Action NanoSpace, CA21126, supported by COST (European Cooperation in Science and Technology).

Authors are grateful to Mr. Giuseppe Ferrara (Calliope facility, ENEA Casaccia R.C.) for his technical support during the irradiation campain.

Funding

State Research Agency of the Spanish Ministry of Science and Innovation, (PID2020-115758 GB-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Cataldo.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzaga, R., García-Hernández, D.A., Manchado, A. et al. On the radiation-induced polymerization of indene: from laboratory study to astrochemical implications. J Radioanal Nucl Chem 333, 865–876 (2024). https://doi.org/10.1007/s10967-023-09307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09307-3

Keywords

Navigation