Skip to main content
Log in

Effects of uranium metal carbon content on hydriding kinetics and corrosion blister number/area at sub-ambient pressures

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Carbon is a common impurity in uranium metal, resulting in a number of uranium–carbon inclusion phases that contribute to an increase in metal defect density as carbon content increases. It is widely held that uranium hydride corrosion preferentially nucleates at these defect sites, and that an increase in carbon content will therefore represents an increase in uranium hydride corrosion sites on the metal surface. We hydrided six uranium sources with differing carbon contents to explore whether this assumption holds in a sub-ambient (~ 0.1 atm hydrogen), sealed environment, and report the resulting reaction kinetics and uranium hydride blister benchmarking data. We find that carbon content is not strongly correlated with reaction kinetics terms or the resulting hydride blister number and area, but that there is a tight relationship between corrosion blister number/area and kinetics as is expected. We find that there is a strong trend of decreasing variance in the blister number, blister area, and induction time as carbon content increases (higher carbon content results in more reproducible blister populations). Additionally, we find a narrow band of uranium metal consumption at the end of the parabolic phase of reaction progress (beginning of linear growth phase) of 0.098 ± 0.011 w/w%, a fact that may be useful in assaying hydrogen corrosion of uranium metal within sealed environments generally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data is available upon request and subsequent approval of release pursuant to Los Alamos National Laboratory and U.S. Department of Energy guidelines and procedures.

Abbreviations

BSE:

Back-scattered electron

DU:

Depleted uranium

COTS:

Commercial off the shelf

SEM:

Scanning electron microscopy

SVR:

Small volume reactor

References

  1. Stitt CA, Harker NJ, Hallam KR, Paraskevoulakos C, Banos A, Rennie S, Jowsey J, Scott TB (2015) An investigation on the persistence of uranium hydride during storage of simulant nuclear waste packages. PLoS ONE 10(7):e0132284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Orr R, Godfrey H, Broan C, Goddard D, Woodhouse G, Durham P, Diggle A, Bradshaw J (2016) Formation and physical properties of uranium hydride under conditions relevant to metallic fuel and nuclear waste storage. J Nucl Mater 477:236–245

    Article  ADS  CAS  Google Scholar 

  3. Havela L, Legut D, Kolorenc J (2023) Hydrogen in actinides: electronic and lattice properties. Reports on Progress in Physics.

  4. Banos A, Harker NJ, Scott TB (2018) A review of uranium corrosion by hydrogen and the formation of uranium hydride. Corros Sci 136:129–147

    Article  CAS  Google Scholar 

  5. Gwak G, Kim M, Oh K, Kyoung S, Ferekh S, Ju H (2017) Analyzing effects of volumetric expansion of uranium during hydrogen absorption. Int J Hydrogen Energy 42(6):3723–3730

    Article  CAS  Google Scholar 

  6. Condon JB, Larson EA (1973) Kinetics of the uranium-hydrogen system. J Chem Phys 59(2):855–865

    Article  ADS  CAS  Google Scholar 

  7. Powell GL, Harper WL, Kirkpatrick JR (1991) The kinetics of the hydriding of uranium metal. J Less Common Metals 172:116–123

    Article  Google Scholar 

  8. Jones CP, Scott TB, Petherbridge JR, Glascott J (2013) A surface science study of the initial stages of hydrogen corrosion on uranium metal and the role played by grain microstructure. Solid State Ionics 231:81–86

    Article  CAS  Google Scholar 

  9. Shi P, Shen L, Bai B, Lang D, Lu L, Li G, Lai X, Zhang P, Wang X (2013) Preferred hydride growth orientation of U− 0.79 wt.% Ti alloy with β+ U2Ti microstructure. J Nucl Mater 441(1–3):1–5

    Article  ADS  CAS  Google Scholar 

  10. Jones CP, Scott TB, Petherbridge JR (2015) Structural deformation of metallic uranium surrounding hydride growth sites. Corros Sci 96:144–151

    Article  CAS  Google Scholar 

  11. Moreno D, Arkush R, Zalkind S, Shamir N (1996) Physical discontinuities in the surface microstructure of uranium alloys as preferred sites for hydrogen attack. J Nucl Mater 230(2):181–186

    Article  ADS  CAS  Google Scholar 

  12. Flitcroft JM, Molinari M, Brincat NA, Williams NR, Storr MT, Allen GC, Parker SC (2018) The critical role of hydrogen on the stability of oxy-hydroxyl defect clusters in uranium oxide. J Mater Chem A 6(24):11362–11369

    Article  CAS  Google Scholar 

  13. Harker RM (2006) The influence of oxide thickness on the early stages of the massive uranium–hydrogen reaction. J Alloy Compd 426(1–2):106–117

    Article  CAS  Google Scholar 

  14. Bloch J, Mintz MH (1997) Kinetics and mechanisms of metal hydrides formation—a review. J Alloy Compd 253:529–541

    Article  Google Scholar 

  15. Glascott J (2003) Hydrogen & Uranium; Interactions between the first and last naturally occurring elements. Discovery-Sci Tech J AWE 6:16–27

    Google Scholar 

  16. Owen LW, Scudamore RA (1966) A microscope study of the initiation of the hydrogen-uranium reaction. Corros Sci 6(11–12):461–468

    Article  CAS  Google Scholar 

  17. Loui A, McCarrick J, McLean W (2021) Uranium hydride corrosion. I New insights into the Condon-Kirkpatrick model of uranium hydride formation rate. Corros Sci 191:109710

    Article  CAS  Google Scholar 

  18. Scott TB, Petherbridge JR, Harker NJ, Ball RJ, Heard PJ, Glascott J, Allen GC (2011) The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour. J Hazard Mater 195:115–123

    Article  CAS  PubMed  Google Scholar 

  19. Kautz EJ, Shahrezaei S, Athon M, Frank M, Schemer-Kohrn A, Soulami A, Lavender C, Joshi VV, Devaraj A (2021) Evaluating the microstructure and origin of nonmetallic inclusions in as-cast U-10Mo fuel. J Nucl Mater 554:152949

    Article  CAS  Google Scholar 

  20. Carvajal Nuñez U, Martel L, Prieur D, Lopez Honorato E, Eloirdi R, Farnan I, Vitova T, Somers J (2013) Coupling XRD, EXAFS, and 13C NMR to study the effect of the carbon stoichiometry on the local structure of UC1±x. Inorg Chem 52(19):11669–11676

    Article  PubMed  Google Scholar 

  21. Olszta MJ, Corbey JF, Athon MT, Huber ZF, Reilly DD, Abrecht DG (2022) A omparison of carbon impurities in pre-and post-melt uranium Part 1: scanning electron microscopy analysis. J Alloy Compd 925:166584

    Article  CAS  Google Scholar 

  22. Olszta MJ, Corbey JF, Reilly DD (2022) A comparison of carbon impurities in pre-and post-melt uranium Part 2: scanning/transmission electron microscopy analysis. J Alloy Compd 925:166583

    Article  CAS  Google Scholar 

  23. Bloch J, Brami D, Kremner A, Mintz MH (1988) Effects of gas phase impurities on the topochemical-kinetic behaviour of uranium hydride development. J Less Common Metals 139(2):371–383

    Article  CAS  Google Scholar 

  24. Hanrahan RJ, Hawley ME, Brown GW (1998) The influence of surface morphology and oxide microstructure on the nucleation and growth of uranium hydride on alpha uranium. MRS Online Proc Libr (OPL) 513:43

    Article  CAS  Google Scholar 

  25. Petherbridge JR, Knowles J, Bazley SG (2016) The effect of thermal pre-treatments on the nucleation of uranium hydride. Solid State Ionics 292:110–115

    Article  CAS  Google Scholar 

  26. Harker NJ, Scott TB, Jones CP, Petherbridge JR, Glascott J (2013) Altering the hydriding behaviour of uranium metal by induced oxide penetration around carbo-nitride inclusions. Solid State Ionics 241:46–52

    Article  CAS  Google Scholar 

  27. Donald SB, Siekhaus WJ, Nelson AJ (2016) XPS and SIMS study of the surface and interface of aged C+ implanted uranium. J Vac Sci Technol A 34(6):061401

    Article  Google Scholar 

  28. Bazley SG, Petherbridge JR, Glascott J (2012) The influence of hydrogen pressure and reaction temperature on the initiation of uranium hydride sites. Solid State Ionics 211:1–4

    Article  CAS  Google Scholar 

  29. Teter DF, Hanrahan RJ, Wetteland CJ (2001) Uranium hydride nucleation kinetics: effects of oxide thickness and vacuum outgassing (No. LA-13772-MS). Los Alamos National Lab.(LANL), Los Alamos, NM (United States)

  30. Zhao X, Munroe P, Habibi D, Xie Z (2013) Roles of compressive residual stress in enhancing the corrosion resistance of nano nitride composite coatings on steel. J Asian Ceram Soc 1(1):86–94

    Article  Google Scholar 

  31. Pu Z, Chen X, Meng X, Wu Y, Shen L, Wang Q, Liu T, Shuai M (2017) Effect of carbo-nitride-rich and oxide-rich inclusions on the pitting susceptibility of depleted uranium. Corros Sci 124:160–166

    Article  CAS  Google Scholar 

  32. Yang MZ, Yang Q, Luo JL (1999) Effects of hydrogen on passive film and corrosion of aisi 310 stainless steel. Corros Sci 41(4):741–745

    Article  CAS  Google Scholar 

  33. Field RD, McCabe RJ, Alexander DJ, Teter DF (2009) Deformation twinning and twinning related fracture in coarse-grained α-uranium. J Nucl Mater 392(1):105–113

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001).

Funding

This work was supported by the U.S. Department of Energy through the Los Alamos National Laboratory and is approved for unlimited release under LA-UR-23–29957. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Pital.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10728 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pital, A., Campbell, K., Richards, A. et al. Effects of uranium metal carbon content on hydriding kinetics and corrosion blister number/area at sub-ambient pressures. J Radioanal Nucl Chem 333, 695–704 (2024). https://doi.org/10.1007/s10967-023-09305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09305-5

Keywords

Navigation