Skip to main content
Log in

In situ spectroscopy of Sm(III) and Sm(II) in LiCl–KCl eutectic molten salt

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Fiber optic-based Raman and UV–Vis spectroscopy systems were commissioned for use in an inert atmosphere for in situ analysis of high temperature molten salts. The speciation of samarium chloride was studied in the LiCl–KCl eutectic system at 500 °C. Raman and electronic absorption spectra indicated trivalent samarium forms an octahedral SmCl63− complex with two detectable Raman features. Metallothermic and electrolytic reduction of Sm(III) to Sm(II) in the alkali halide solution was carried out to investigate the coordination of Sm(II) in the same eutectic salt. Formation of the Sm(II) was confirmed using UV–Vis absorption spectroscopy. The resulting spectra are reported and discussed in terms of complex formation, inelastic scattering, and electronic absorption of the reduced Sm(II) ions. The Raman spectrum of metallothermically produced Sm(II) exhibited similar shift to the Raman spectrum of metallothermically reduced Nd(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gat U, Engel JR (2000) Non-proliferation attributes of molten salt reactors. Nucl Eng Des 201:327–334

    Article  CAS  Google Scholar 

  2. Alekseev PN, Ignatiev VV, Konakov SA, Menshikov LI, Ponomarev-Stepnoi NN, Prusakov VN, Stukalov VA, Subbotine SA (1997) Harmonization of fuel cycles for nuclear energy system with the use of molten salt technology. Nucl Eng Des 173:151–158

    Article  CAS  Google Scholar 

  3. Ackerman JP (1991) Chemical basis for pyrochemical reprocessing of nuclear fuel. Ind Eng Chem Res 30:141–145

    Article  CAS  Google Scholar 

  4. McPheeters CC, Pierce RD, Mulcahey TP (1997) Application of the pyrochemical process to recycle of actinides from LWR spent fuel. Prog Nucl Energy 31:175–186. https://doi.org/10.1016/0149-1970(96)00010-8

    Article  CAS  Google Scholar 

  5. Nawada HP, Fukuda K (2005) Role of pyro-chemical processes in advanced fuel cycles. J Phys Chem Solids 66:647–651. https://doi.org/10.1016/j.jpcs.2004.07.022

    Article  ADS  CAS  Google Scholar 

  6. Simpson MF (2012) Developments of spent nuclear fuel pyroprocessing technology at Idaho National Laboratory. Idaho National Laboratory, INL/EXT-12-25124, Idaho Falls, ID, USA

  7. Sridharan K, Allen T, Anderson M, Simpson M (2012) Thermal properties of LiCl-KCl molten salt for nuclear waste separation. USDOE (United States); Nuclear Energy University Programs (United States), United States of America. https://doi.org/10.2172/1058922

  8. Tylka MM, Willit JL, Prakash J, Williamson MA (2015) Method development for quantitative analysis of actinides in molten salts. J Electrochem Soc 162:H625–H633. https://doi.org/10.1149/2.0401509jes

    Article  CAS  Google Scholar 

  9. Williamson MA, Willit JL (2011) Pyroprocessing flowsheets for recycling used nuclear fuel. Nucl Eng Technol 43:329–334. https://doi.org/10.5516/NET.2011.43.4.329

    Article  CAS  Google Scholar 

  10. Rodriguez-Betancourtt VM, Nattland D (2005) Raman spectroscopic study of mixed valence neodymium and cerium chloride solutions in eutectic LiCl–KCl melts. Phys Chem Chem Phys 7:173–179

    Article  CAS  Google Scholar 

  11. Janz GJ, James DW (1961) Raman spectra and ionic interactions in molten nitrates. J Chem Phys 35:739–745

    Article  ADS  CAS  Google Scholar 

  12. Janz GJ, Mikawa Y, James DW (1961) Light source, excitation, and high temperature cell assembly for raman spectroscopy. Appl Spectrosc 15:47–52

    Article  ADS  CAS  Google Scholar 

  13. Liu X, Li Y, Wang B, Wang C (2021) Raman and density functional theory studies of lutecium fluoride and oxyfluoride structures in molten FLiNaK. Spectrochim Acta A Mol Biomol Spectrosc 251:119435. https://doi.org/10.1016/j.saa.2021.119435

    Article  CAS  PubMed  Google Scholar 

  14. Singh V, Bruneau C, Karmiol Z, Moon J, Chidambaram D (2023) The effect of oxychloride formation on the electroanalytical determination of chlorides in molten salts: an investigation of SmOCl in molten LiCl–KCl. J Radioanal Nucl Chem 332:691–697. https://doi.org/10.1007/s10967-023-08800-z

    Article  CAS  Google Scholar 

  15. Windisch CF, Cox JL, Greenwell EN (1997) A Raman spectroscopic study of the interaction of cesium ions with oxyanions in carbonate melts. Spectrochim Acta A Mol Biomol Spectrosc 53:1981–1993. https://doi.org/10.1016/S1386-1425(97)00117-0

    Article  ADS  Google Scholar 

  16. Li J, Sheng L, Wang Q, Wang Y, Song L, Zhou Y, Zhu F (2023) Study on ionic association behavior in sodium nitrate solution. Spectrochim Acta A Mol Biomol Spectrosc 285:121888. https://doi.org/10.1016/j.saa.2022.121888

    Article  CAS  PubMed  Google Scholar 

  17. Chrissanthopoulos A, Papatheodorou GN (2006) Temperature dependence of the f←f hypersensitive transitions of Ho3+ and Nd3+ in molten salt solvents and the structure of the LaCl3–KCl melts. J Mol Struct 782:130–142. https://doi.org/10.1016/j.molstruc.2005.08.003

    Article  ADS  CAS  Google Scholar 

  18. Chrissanthopoulos A, Papatheodorou GN (2000) Probing the structure of GdCl3–KCl melt mixtures by electronic absorption spectroscopy of the hypersensitive f←f transitions of Ho3+ and by Raman spectroscopy. Phys Chem Chem Phys 2:3709–3714. https://doi.org/10.1039/B004227G

    Article  CAS  Google Scholar 

  19. Moon J, Chidambaram D (2022) Near-infrared spectra and molar absorption coefficients of trivalent lanthanides dissolved in molten LiCl–KCl eutectic. Prog Nucl Energy 152:104375. https://doi.org/10.1016/j.pnucene.2022.104375

    Article  CAS  Google Scholar 

  20. Schroll CA, Lines AM, Heineman WR, Bryan SA (2016) Absorption spectroscopy for the quantitative prediction of lanthanide concentrations in the 3LiCl–2CsCl eutectic at 723 K. Anal Methods 8:7731–7738. https://doi.org/10.1039/C6AY01520D

    Article  CAS  Google Scholar 

  21. Nagai T, Uehara A, Fujii T, Shirai O (2005) Redox equilibrium of U4/U3 in molten NaCl-2CsCl by UV-Vis spectrophotometry and cyclic voltammetry. J Nucl Sci Technol 42:1025–1031

    Article  CAS  Google Scholar 

  22. Lambert H, Claux B, Sharrad C, Soucek P, Malmbeck R (2016) Spectroscopic studies of Neodymium(III) and Praseodymium(III) compounds in molten chlorides. Proced Chem 21:409–416. https://doi.org/10.1016/j.proche.2016.10.057

    Article  Google Scholar 

  23. Moon J, Fuller J, An Q, Chidambaram D (2023) Temperature and anion ligand field dependence of LnCl3 (Ln = Nd, Dy, Sm) electronic absorption spectra in LiCl–KCl eutectic molten salt. Prog Nucl Energy 157:104584. https://doi.org/10.1016/j.pnucene.2023.104584

    Article  CAS  Google Scholar 

  24. Uda T, Fujii T, Iwadate Y, Uehara A, Yamana H (2013) Raman spectroscopic study of rare earth chlorides in alkali chloride eutectic melts. Z Anorg Allg Chem 639:765–769. https://doi.org/10.1002/zaac.201200480

    Article  CAS  Google Scholar 

  25. Chandrasekhar HR, Bhattacharya G, Migoni R, Bilz H (1978) Infrared and Raman spectra and lattice dynamics of the superionic conductor Li3N. Phys Rev B Condens Matter 17:884–893

    Article  ADS  CAS  Google Scholar 

  26. Iwadate Y (2013) 2 - Raman Spectroscopy and pulsed neutron diffraction of molten salt mixtures containing rare-earth trichlorides: trial approaches from fundamentals to pyrochemical reprocessing A2 - Lantelme, Frédéric. In: Groult H (ed) Molten salts chemistry. Elsevier, Oxford, pp 17–31. https://doi.org/10.1016/B978-0-12-398538-5.00002-0

    Chapter  Google Scholar 

  27. Papatheodorou GN (1977) Raman spectroscopic studies of yttrium (III) chloride–alkali metal chloride melts and of Cs2NaYCl6 and YCl3 solid compounds. J Chem Phys 66:2893–2900. https://doi.org/10.1063/1.434359

    Article  ADS  CAS  Google Scholar 

  28. Merwin A, Phillips WC, Williamson MA, Willit JL, Motsegood PN, Chidambaram D (2016) Presence of Li clusters in molten LiCl-Li. Sci Rep 6:25435. https://doi.org/10.1038/srep25435

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Merwin A (2016) Material interactions with molten LiCl-Li2O-Li. Doctoral Dissertation titled 'Material Interactions with Molten LiCl-Li2O-Li', University of Nevada, Reno, Reno

  30. Singh V, Chidambaram D (2017) In Situ Raman spectroscopy for nuclear material monitoring in molten salt systems, Abstract 765 in Corrosion Session. In: Paper presented at the 232nd Meeting of the Electrochemical Society, National Harbor, MD USA,

  31. Rodriguez Betancourtt VM (2003) Raman spectroscopic study of high temperature rare earth metal - rare earth halide solutions: Ln-LnX3- and LnX2-LnX3-(LiX-KX)eu systems (Ln: Nd, Ce; X: Cl, I). Karlsruhe Institute of Technology,

  32. Willit JL, Miller WE, Battles JE (1992) Electrorefining of uranium and plutonium—a literature review. J Nucl Mater 195:229–249. https://doi.org/10.1016/0022-3115(92)90515-M

    Article  ADS  CAS  Google Scholar 

  33. Okamoto Y, Suzuki S, Shiwaku H, Ikeda-Ohno A, Yaita T, Madden PA (2010) Local coordination about La3+ in molten LaCl3 and its mixtures with alkali chlorides. J Phys Chem A 114:4664–4671. https://doi.org/10.1021/jp910637p

    Article  CAS  PubMed  Google Scholar 

  34. Glover WJ, Madden PA (2004) Raman spectra of ionic liquids: a simulation study of LaCl3 and its mixtures with alkali chlorides. J Chem Phys 121:7293–7303. https://doi.org/10.1063/1.1792574

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Fukasawa K, Uehara A, Nagai T, Fujii T, Yamana H (2011) Electrochemical and spectrophotometric study on neodymium ions in molten alkali chloride mixtures. J Alloys Compd 509:5112–5118

    Article  CAS  Google Scholar 

  36. Fujii T, Nagai T, Uehara A, Yamana H (2007) Electronic absorption spectra of lanthanides in a molten chloride: III. Absorption characteristics of trivalent samarium, dysprosium, holmium, and erbium in various molten chlorides. J Alloys Compd 441:L10–L13. https://doi.org/10.1016/j.jallcom.2006.09.113

    Article  CAS  Google Scholar 

  37. Bae S-E, Jung TS, Cho Y-H, Kim J-Y, Kwak K, Park T-H (2018) Electrochemical formation of divalent samarium cation and its characteristics in LiCl–KCl melt. Inorg Chem 57:8299–8306. https://doi.org/10.1021/acs.inorgchem.8b00909

    Article  CAS  PubMed  Google Scholar 

  38. Singh V, Chidambaram D (2016) Electrochemical Studies of Lanthanide Chlorides in Molten Eutectic LiCl-KCl. Paper presented at the Materials Science and Technology 2016, Salt Lake City, Utah

  39. Singh V, Chidambaram D (2017) Electrochemical techniques for nuclear safeguards in Molten Salt. Paper presented at the 146th Annual Meeting of the Minerals, Metals and Materials Society, San Diego, California, February 26 - March 2, 2017

  40. Singh V, Chidambaram D (2016) Electrochemical Behavior of Samarium in Molten LiCl-KCl. Paper presented at the Pacific Rim International Meeting on Electrochemistry, Honolulu

  41. Phillips WC, Gakhar R, Horne GP, Layne B, Iwamatsu K, Ramos-Ballesteros A, Shaltry MR, LaVerne JA, Pimblott SM, Wishart JF (2020) Design and performance of high-temperature furnace and cell holder for in situ spectroscopic, electrochemical, and radiolytic investigations of molten salts. Rev Sci Instrum 91:083105. https://doi.org/10.1063/1.5140463

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Williams AN, Cao G, Shaltry MR (2021) Voltammetry measurements in lithium chloride-lithium oxide (LiCl–Li2O) salt: An evaluation of working electrode materials. J Nucl Mater 546:152760. https://doi.org/10.1016/j.jnucmat.2020.152760

    Article  CAS  Google Scholar 

  43. Menges F (2022) Spectragryph - optical spectroscopy software. 1.2.15 edn.

  44. Dracopoulos V, Gilbert B, Brrensen B, Photiadis GM, Papatheodorou GN (1997) Vibrational modes and structure of rare earth halide–alkali halide binary melts YBr 3–ABr (A= Li, K, Cs) and YF 3–KF. J Chem Soc Faraday Trans 93:3081–3088

    Article  CAS  Google Scholar 

  45. Cordoba G, Caravaca C (2004) An electrochemical study of samarium ions in the molten eutectic LiCl+KCl. J Electroanal Chem 572:145–151. https://doi.org/10.1016/j.jelechem.2004.05.029

    Article  CAS  Google Scholar 

  46. Johnson KE, Mackenzie JR, Sandoe JN (1968) Spectra of samarium(II), europium(II), and ytterbium(II) in molten lithium chloride–potassium chloride. J Chem Soc A. https://doi.org/10.1039/J19680002644

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Department of Energy (DOE) under Contracts DE-NE0008236 and DE-NE0008572, the DOE Office of Nuclear Energy's Nuclear Energy University Programs under award DE-NE0008889, and the United States Nuclear Regulatory Commission (NRC) under contracts NRC-HQ-13-G-38-0027 and 31310018M0032. VJS acknowledges the fellowship award from the NRC. Dr. Kenny Osborne and Ms. Nancy Hebron-Israel serve as the DOE and NRC award program managers, respectively. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1447692. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, the U.S. Department of Energy, or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

VJS: Conceptualization, methodology, formal analysis, investigation, writing—original draft, visualization JTM: Conceptualization, methodology, formal analysis, investigation, writing—original draft, visualization CDB: formal analysis, investigation DC: Conceptualization, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Dev Chidambaram.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.J., Moon, J.T., Bruneau, C.D. et al. In situ spectroscopy of Sm(III) and Sm(II) in LiCl–KCl eutectic molten salt. J Radioanal Nucl Chem 333, 641–650 (2024). https://doi.org/10.1007/s10967-023-09288-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09288-3

Keywords

Navigation