Skip to main content
Log in

A comparative study of sorption of microamounts of Ra, Po, U, Th, Np and Pa by a thin-layer sorbent based on manganese dioxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Thin-layer flat sorbents are used in analysis of alpha emitters allowing combine radionuclide separation and thin alpha source preparation into one stage. This work describes a comparative study of sorption of microamounts of Ra, Po, U, Th, Np and Pa by a thin-layer MnO2-CTA sorbent consisting of manganese dioxide coated onto cellulose triacetate. It was shown that pH dependences of Ra, U and Np sorption had S-type appearance with maximum in neutral and alkaline media that is typical for cation exchange mechanism of sorption. Sorption of Po and Pa was low over the whole pH range studied. Th showed unusual reverse S-type pH dependence of sorption with the maximum at pH 2.0–2.5 that can be explained by hydrolysis of thorium at pH > 4. Distribution coefficients of the isotopes were calculated using mathematical treatment of sorption isotherms. As it was shown on a real solid radioactive waste sample, the MnO2-CTA sorbent allowed separating Th-230 from Ra-226 and U-234, which emit alpha particles with similar energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All raw data are available by request via the corresponding author’s e-mail: vovius82@mail.ru or v.s.semenishchev@urfu.ru.

References

  1. Koulouris G (1996) Sorption and distribution of 226Ra in an electrolytic manganese dioxide column in the presence of other ions. J Radioanal Nucl Chem Letters 212(2):131–141

    Article  CAS  Google Scholar 

  2. Sidle WC, Shanklin D, Lee PY, Roose DL (2001) 226Ra and 228Ra activities associated with agricultural drainage ponds. J Environ Radioact 55:29–46

    Article  CAS  PubMed  Google Scholar 

  3. Eikenberg J, Bajo S, Beer H, Hitz J, Ruethi M, Zumsteg I, Letessier P (2004) Fast methods for determination of anthropogenic actinides and U/Th-series isotopes in aqueous samples. Appl Radiat Isot 61(2–3):101–106

    Article  CAS  PubMed  Google Scholar 

  4. Moon DS, Burnett WC, Nour S, Horwitz P, Bond A (2003) Preconcentration of radium isotopes from natural waters using MnO2 Resin. Appl Radiat Isot 59:255–262

    Article  CAS  PubMed  Google Scholar 

  5. Egorin A, Sokolnitskaya T, Azarova Y, Portnyagin A, Balanov M, Misko D, Shelestyuk E, Kalashnikova A, Tokar E, Tananaev I, Avramenko V (2018) Investigation of Sr uptake by birnessite-type sorbents from seawater. J Radioanal Nucl Chem 317:243–251

    Article  CAS  Google Scholar 

  6. Yang C, Zhong Y, Li L, Ren X, Sun Y, Niu D, Liu Y, Yin M, Zhang D (2018) Lead and uranium sorption characteristics on hydrothermal synthesized delta manganese dioxide. J Radioanal Nucl Chem 317:1399–1408

    Article  CAS  Google Scholar 

  7. Al Lafi AG, Al Abdullah J, Amin Y, Alnama T, Aljbai Y, Hasan R, Alsayes G (2019) Sulfonated poly(ether ether ketone)/manganese dioxide composite for the removal of low level radionuclide ions from aqueous solution. J Radioanal Nucl Chem 321:463–472

    Article  CAS  Google Scholar 

  8. Chmielewská E, Majzlan J, Bujdoš M (2022) Clinoptilolite with surface-enhanced functionality for radionuclide and inorganic pollutants removal. J Radioanal Nucl Chem 331:3495–3504. https://doi.org/10.1007/s10967-022-08375-1

    Article  CAS  Google Scholar 

  9. Yang C, Niu D, Zhong Y, Li L, Lv H, Yang L (2018) Adsorption of uranium by hydrous manganese dioxide from aqueous solution. J Radioanal Nucl Chem 315:533–542

    Article  CAS  Google Scholar 

  10. Ohnuki T, Kozai N (1995) Sorption behavior of cobalt on manganese dioxide. Smectite Mix Radiochim Acta 68:203–207

    Article  CAS  Google Scholar 

  11. Xiu T, Liu Z, Wang Y, Wu P, Du Y, Cai Z (2019) Thorium adsorption on graphene oxide nanoribbons/manganese dioxide composite material. J Radioanal Nucl Chem 319:1059–1067. https://doi.org/10.1007/s10967-019-06417-9

    Article  CAS  Google Scholar 

  12. Xiu T, Liu Z, Yang L, Wang Y (2019) Removal of thorium and uranium from aqueous solution by adsorption on hydrated manganese dioxide. J Radioanal Nucl Chem 321(2):671–681. https://doi.org/10.1007/s10967-019-06634-2

    Article  CAS  Google Scholar 

  13. Gill H (2000) Interfacial reaction studies of plutonium on manganese oxide hydroxide mineral surfaces. Lawrence Berkeley National Laboratory. LBNL Report #: LBNL-47629 Abs.

  14. Reilly SD, Myers WK, Stout SA, Smith DM, Ginder-Vogel MA, Neu MP (2003) Plutonium(VI) sorption to manganese dioxide. AIP Conf Proc 673(1):375–376. https://doi.org/10.1063/1.1594670

    Article  CAS  Google Scholar 

  15. Burns K (2005) Determination of radium and uranium isotopes in natural waters by sorption on hydrous manganese dioxide followed by alpha-spectrometry. J Radioanal Nucl Chem 264:437–443. https://doi.org/10.1007/s10967-005-0734-5

    Article  CAS  Google Scholar 

  16. Vajda N, Pöllänen R, Martin P, Kim C-K (2020) Chapter 5-Alpha spectrometry. In: L’Annunziata MF (ed) Handbook of Radioactivity analysis, 4th edn. Academic Press, Elsevier

    Google Scholar 

  17. Ivanets AI, Katsoshvili LL, Krivoshapkin PV, Prozorovich VG, Kuznetsova TF, Krivoshapkina EF, Radkevich AV, Zarubo AM (2017) Sorption of strontium ions onto mesoporous manganese oxide of OMS-2 type. Radiochemistry 59:264–271

    Article  CAS  Google Scholar 

  18. Kamran U, Heo Y-J, Lee JW, Park S-J (2019) Chemically modified activated carbon decorated with MnO2 nanocomposites for improving lithium adsorption and recovery from aqueous media. J Alloy Compounds 794:425–434

    Article  CAS  Google Scholar 

  19. Ajith N, Swain KK (2019) An ultrasound assisted reductive method for preparation of MnO2: modification of XAD and application in removal of arsenic. Sep Sci Technol 55(9):1715–1723

    Article  Google Scholar 

  20. Zuba I, Polkowska-Motrenko H (2019) Application of MnO2 Resin and Dowex 1X8 manganese dioxide impregnated resin for the separation of chromium from biological samples. J Radioanal Nucl Chem 322:969–974

    Article  CAS  Google Scholar 

  21. Veleshko AN, Kulyukhin SA, Veleshko IE, Domantovskii AG, Rozanov KV, Kislova IA (2008) Sorption of radionuclides from solutions with composite materials based on Mikoton natural biopolymer. Radiochemistry 50:508–514

    Article  CAS  Google Scholar 

  22. Yang Z, Chen J, Yang K, Zhang Q, Zhang B (2020) Preparation of BSA surface imprinted manganese dioxide-loaded tubular carbon fibers with excellent specific rebinding to target protein. J Colloid Interface Sci 570:182–196

    Article  CAS  PubMed  Google Scholar 

  23. Surbeck H (2000) Alpha spectrometry sample preparation using selectively adsorbing thin films. Appl Radiat Isotop 53:97–100

    Article  CAS  Google Scholar 

  24. Eikenberg J, Tricca A, Vezzu G, Bajo S, Ruethi M, Surbeck H (2001) Determination of 228Ra, 226Ra and 224Ra in natural water via adsorption on MnO2-coated discs. J Environ Radioact 54:109–131

    Article  CAS  PubMed  Google Scholar 

  25. Karamanis D, Ioannides KG, Stamoulis KC (2006) Determination of 226Ra in aqueous solutions via sorption on thin films and α-spectrometry. Anal Chim Acta 573–574:319–327

    Article  PubMed  Google Scholar 

  26. Jobbágy V (2022) Rapid radionuclide specific screening procedures in drinking water: alternative options to replace inaccurate gross activity measurements. J Radioanal Nucl Chem 331:3877–3885. https://doi.org/10.1007/s10967-022-08409-8

    Article  CAS  Google Scholar 

  27. Maxwell SL, Culligan BK, Utsey RC, McAlister DR, Horwitz EP (2013) Rapid method for determination of 228Ra in water samples. J Radioanal Nucl Chem 295:2181–2188

    Article  CAS  Google Scholar 

  28. Medley P, Martin P, Bollhöfer A, Parry D (2015) 228Ra and 226Ra measurement on a BaSO4 co-precipitation source. Appl Radiat Isotop 95:200–207

    Article  CAS  Google Scholar 

  29. Van Es EM, Russell BC, Ivanov P, Garcıa Miranda M, Read D, Dirks C, Happel S (2017) The behaviour of 226Ra in high-volume environmental water samples on TK100 resin. J Radioanal Nucl Chem 312:105–110

    Article  PubMed  PubMed Central  Google Scholar 

  30. Semenishchev VS, Betenekov ND, Tomashova LA, Voronina AV (2017) Determination of Ra-224 and Ra-226 in drinking waters. AIP Conf Proc 1886:020061

    Article  CAS  Google Scholar 

  31. Semenishchev VS, Tomashova LA, Titova SM (2021) The study of radium and polonium sorption by a thin-layer MnO2-CTA sorbent. J Radioanal Nucl Chem 327:997–1003. https://doi.org/10.1007/s10967-020-07576-w

    Article  CAS  Google Scholar 

  32. Semenishchev VS, Oglezneva VYu, Titova SM, Malyshev AS, Filinkova VK (2021) Study of the regularities of the deposition of thin sorption-active films of manganese dioxide on various polymeric carriers. Sorpt Chromatogr Process 21(3):380–390. https://doi.org/10.17308/sorpchrom.2021.21/3471(InRussian)

    Article  Google Scholar 

  33. Live Chart of Nuclides https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html (Accessed 10 Aug 2023)

  34. Nalivaiko KA, Skripchenko SY, Titova SM, Semenishchev VS (2023) Radioactive wastes from near-surface storage facility of uranium conversion production. J Radioanal Nucl Chem 332(7):2499–2512. https://doi.org/10.1007/s10967-023-08912-6

    Article  CAS  Google Scholar 

  35. Ramsdellite Mineral Data: http://webmineral.com/data/Ramsdellite.shtml#.XxwlFOdS-M8 (Accessed 22 Oct 2023).

  36. Pyrolusite Mineral Data: http://webmineral.com/data/Pyrolusite.shtml#.XxwkXudS-M8 (accessed 22 Oct 2023).

  37. IR spectra database https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi (accessed 22 Oct 2023)

  38. Katz JJ, Seaborg GT, Morss LR (1986) The chemistry of the actinide elements, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  39. Brookings DG (1988) Eh–pH diagrams for geochemistry. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  40. Plotnikov VI, Bannykh VI (2004) Sorption of thorium with metal hydroxides. Radiochemistry 46:481–483. https://doi.org/10.1007/s11137-005-0015-8

    Article  CAS  Google Scholar 

  41. Gascón JL, Crespo MT, Aceña ML (1990) Anomalies in thorium adsorption on manganese dioxide. J Radioanal Nucl Chem Art 139:249–254. https://doi.org/10.1007/BF02061809

    Article  Google Scholar 

  42. Lur’e Y Y, (1971) Handbook on analytical chemistry. Khimia, Moscow

    Google Scholar 

  43. Roberts KE, Silber HB, Torretto PC, Prussin T, Becraft K, Hobart DE, Novak CF (1996) The experimental determination of the solubility product for NpO2OH in NaCl solutions. Radiochim Acta 74(s1):27–30

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation No. 22-29-00846, https://rscf.ru/en/project/22-29-00846/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Semenishchev.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenishchev, V.S., Ishimbaeva, E.N., Rogozhnikov, V.A. et al. A comparative study of sorption of microamounts of Ra, Po, U, Th, Np and Pa by a thin-layer sorbent based on manganese dioxide. J Radioanal Nucl Chem 333, 429–439 (2024). https://doi.org/10.1007/s10967-023-09269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09269-6

Keywords

Navigation