Skip to main content
Log in

Neutron spectrum unfolding code based on iterative method combined with artificial neural networks for bonner sphere spectrometer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, an improved neutron spectrum unfolding code “Artificial Neural Network Iterative” (ANN_Iter), which utilizes the iterative method combined with artificial neural networks, is proposed for Bonner sphere spectrometer. 201 neutron energy spectra and the corresponding measured responses of Bonner spheres with 15 polyethylene shells of different diameter were provided by an IAEA report. In the process of unfolding, the pre-trained artificial neural network provides a guess spectrum according to the “knowledge” it has learned. The guess spectrum was used as the default initial spectrum in the iterative method, which unfolds the spectrum by the response function and the measured counts. The results show that the ANN_Iter’s unfolded spectra have a good agreement with the desired spectra. In addition, their accuracy has improved compared with ANN’s guess spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Bramblett RL, Ewing RI, Bonner TW (1960) A new type of neutron spectrometer. Nucl Instrum Methods 9(1):1–12. https://doi.org/10.1016/0029-554X(60)90043-4

    Article  Google Scholar 

  2. Thomas DJ (2010) Neutron spectrometry. Radiat Meas 45(10):1178–1185. https://doi.org/10.1016/j.radmeas.2010.04.016

    Article  CAS  Google Scholar 

  3. Thomas DJ, Alevra AV (2002) Bonner sphere spectrometers—a critical review. Nucl Inst Methods Phys A 476(1):12–20. https://doi.org/10.1016/S0168-9002(01)01379-1

    Article  CAS  Google Scholar 

  4. Press WH, Teukolsky SA, Flannery BP, Vetterling WT (1992) Numerical recipes in FORTRAN: the art of scientific computing. Press, New York

    Google Scholar 

  5. Ortiz-Rodríguez JM, Reyes AA , Reyes HA (2013) Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks. In: International symposium on radiation physics

  6. Matzke M, Weise K (1985) Neutron spectrum unfolding by the Monte Carlo method. Nucl Inst Methods Phys A 234(2):324–330. https://doi.org/10.1016/0168-9002(85)90924-6

    Article  Google Scholar 

  7. Reginatto M (2006) Bayesian approach for quantifying the uncertainty of neutron doses derived from spectrometric measurements. Radiat Prot Dosim 121(1):64

    Article  CAS  Google Scholar 

  8. Reginatto M, Goldhagen P (1999) MAXED, a computer code for maximum entropy deconvolution of multisphere neutron spectrometer data. Health Phys 77(5):579

    Article  CAS  PubMed  Google Scholar 

  9. Braga CC, Dias MS (2002) Application of Neural Networks for unfolding neutron spectra measured by means of Bonner Spheres. Nucl Inst Methods Phys A 476(1):252–255. https://doi.org/10.1016/S0168-9002(01)01464-4

    Article  CAS  Google Scholar 

  10. IAEA (2001) Compendium of neutron spectra and detector responses for radiation protection purposes

  11. Wiegel B, Alevra AV, Siebert BRL (1994) Calculations of the response functions of Bonner spheres with a spherical 3He proportional counter using a realistic detector model. Report PTB-N-21, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

  12. Matzke M (1994) Unfolding of pulse height spectra: the HEPRO program system. Report PTB-N-19, Physikalisch-Technische-Bundesanstalt, Braunschweig

  13. Reginatto M (2002) Resolving power of a multisphere neutron spectrometer. Nucl Inst Methods Phys A 480(2):690–695. https://doi.org/10.1016/S0168-9002(01)01207-4

    Article  CAS  Google Scholar 

  14. Matzke M (2003) Unfolding procedures. Radiat Prot Dosimetry 107(1–3):155–174

    Article  CAS  PubMed  Google Scholar 

  15. Zhao D, Jia W (2019) Feasibility study on neutron energy spectrum measurement utilizing prompt gamma-rays. Nucl Inst Methods Phys A 933:56–62. https://doi.org/10.1016/j.nima.2019.03.056

    Article  CAS  Google Scholar 

  16. Reginatto M (2010) Overview of spectral unfolding techniques and uncertainty estimation. Radiat Meas 45(10):1323–1329. https://doi.org/10.1016/j.radmeas.2010.06.016

    Article  CAS  Google Scholar 

  17. Mazrou H, Bezoubiri F (2018) Evaluation of a neutron spectrum from Bonner spheres measurements using a Bayesian parameter estimation combined with the traditional unfolding methods. Radiat Phys Chem 148:33–42. https://doi.org/10.1016/j.radphyschem.2018.02.014

    Article  CAS  Google Scholar 

  18. Yan J, Liu R, Li C, Jiang L, Wang M (2011) Application of artificial neural networks for unfolding neutron spectra by using a scintillation detector. Sci China Phys Mech 54(3):465–469

    Article  Google Scholar 

  19. del Rosario M-B, Ornelas-Vargas G, Castañeda-Miranda CL, Solís-Sánchez LO, Castañeda-Miranada R, Vega-Carrillo HR, Celaya-Padilla JM, Garza-Veloz I, Martínez-Fierro M, Ortiz-Rodríguez JM (2016) A neutron spectrum unfolding code based on generalized regression artificial neural networks. Appl Radiat Isotopes 117:8–14. https://doi.org/10.1016/j.apradiso.2016.04.029

    Article  CAS  Google Scholar 

  20. Ortiz-Rodríguez JM, Reyes Alfaro A, Reyes Haro A, Cervantes Viramontes JM, Vega-Carrillo HR (2014) A neutron spectrum unfolding computer code based on artificial neural networks. Radiat Phys Chem 95:428–431. https://doi.org/10.1016/j.radphyschem.2013.05.007

    Article  CAS  Google Scholar 

  21. Vega-Carrillo HR, Martín Hernández-Dávila V, Manzanares-Acuña E, Mercado Sánchez GA, Iñiguez P, de la Torre M, Barquero R, Palacios F, Méndez Villafañe R, Arteaga Arteaga T, Manuel Ortiz Rodriguez J (2006) Neutron spectrometry using artificial neural networks. Radiat Meas 41(4):425–431. https://doi.org/10.1016/j.radmeas.2005.10.003

    Article  CAS  Google Scholar 

  22. International. (1989). Neutron reference radiations for calibrating neutron-measuring devices used for radiation protection purposes and for determining their response as a function of neutron energy. International Organization for Standardization.

  23. Iwai S, Ohkubo T, Hara A, Nakamura T (1987) Establishment of a simple neutron calibration field using a moderated Cf source: Part II. Experimental characterization of simple neutron calibration field. Nucl Inst Methods Phys A: Accel Spectrom Detect Assoc Equip 254(1):159–171

    Article  Google Scholar 

  24. Alevra AV, Klein H, Knauf K, Wittstock J (1992) Neutron field spectrometry for radiation protection dosimetry purposes. Radiat Prot Dosim 44(1–4):223–226

    Article  CAS  Google Scholar 

  25. Griffith RV, Slaughter DR, Patterson HW, Beach JL, Frank EG, Rueppel DW, Fisher JC (1977) Multi-technique characterization of neutron fields from moderated 252 Cf and 238 PuBe sources (No. UCRL--79483). California Univ..

  26. Chartier JL, Jansky B, Kluge H, Schraube H, Wiegel B (1997) Recent developments in the specification and achievement of realistic neutron calibration fields. Radiat Prot Dosim 70(1–4):305–312

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China No.11975121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiwei, L., Wenbao, J., Wei, C. et al. Neutron spectrum unfolding code based on iterative method combined with artificial neural networks for bonner sphere spectrometer. J Radioanal Nucl Chem 333, 557–562 (2024). https://doi.org/10.1007/s10967-023-09259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09259-8

Keywords

Navigation