Skip to main content
Log in

Radiolabeled chemotherapeutics as a novel strategy for targeted cancer therapy: current insights and future perspectives

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The use of radiolabeled chemotherapeutics is an exciting prospect in the management of cancer, as lethal cytotoxic radiation dose can be delivered to the cancerous lesions by using minimum amount of chemotherapy drugs, thereby without exerting significant chemotoxic dose burden to the patients, and thus overcoming one of the serious impediments of chemotherapeutic interventions. There is a huge array of natural and synthetic chemotherapeutic drugs, which find regular use in cancer therapy. Radiolabeling some of these drugs with suitable therapeutic radionuclides have been achieved successfully and these radiolabeled agents have shown considerable promise in the pre-clinical studies. This article archives the efforts directed towards developing radiolabeled chemotherapeutics for therapeutic intervention of cancers and results obtained till date with such agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Greenhalgh TA, Symonds RP (2014) Principles of chemotherapy and radiotherapy. Obstet Gynaecol Reprod Med 24:259–265

    Article  Google Scholar 

  2. Lind MJ (2008) Principles of cytotoxic chemotherapy. Medicine 36:19–23

    Article  Google Scholar 

  3. Abotaleb M, Kubatka P, Caprnda M, Varghese E, Zolakova B, Zubor P, Opatrilova R, Kruzliak P, Stefanicka P, Busselberg D (2018) Chemotherapeutic agents for the treatment of metastatic breast cancer: an update. Biomed Pharmacother 101:458–477

    Article  CAS  PubMed  Google Scholar 

  4. Chabner BA, Roberts TG (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72

    Article  CAS  PubMed  Google Scholar 

  5. Espinosa E, Zamora P, Feliu J, Barón MG (2003) Classification of anticancer drugs: a new system based on therapeutic targets. Cancer Treat Rev 29:515–523

    Article  CAS  PubMed  Google Scholar 

  6. Schirrmacher V (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. Int J Oncol 54:407–419

    Article  CAS  PubMed  Google Scholar 

  7. Shewach DS, Kuchta RD (2009) Introduction to cancer chemotherapeutics. Chem Rev 109:2859–2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tannock IF (1998) Conventional cancer therapy: Promise broken or promise delayed? The Lancet 351:SII–SII16

    Article  Google Scholar 

  9. Abdulkareem I, Zurmi I (2012) Review of hormonal treatment of breast cancer. Niger J Clin Pract 15:9–14

    Article  CAS  PubMed  Google Scholar 

  10. Abraham J, Ocen J, Staffurth J (2023) Hormonal therapy for cancer. Medicine 51:28–31

  11. Chen W, Yuan Y, Jiang X (2020) Antibody and antibody fragments for cancer immunotherapy. J Control Release 328:395–406

    Article  CAS  PubMed  Google Scholar 

  12. Melief CJ (2021) The future of immunotherapy. Immunother Adv 1:1–2

    Article  Google Scholar 

  13. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287

    Article  CAS  PubMed  Google Scholar 

  14. Weiner LM, Murray JC, Shuptrine CW (2012) Antibody-based immunotherapy of cancer. Cell 148:1081–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10:317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ersahin D, Doddamane I, Cheng D (2011) Targeted radionuclide therapy. Cancers 3:3838–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sgouros G, Bodei L, McDevitt MR, Nedrow JR (2020) Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov 19:589–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boussios S, Pentheroudakis G, Katsanos K, Pavlidis N (2012) Systemic treatment-induced gastrointestinal toxicity: incidence, clinical presentation and management. Ann Gastroenterol 5:106–118

    Google Scholar 

  19. Eckford PD, Sharom FJ (2009) ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev 109:2989–3011

    Article  CAS  PubMed  Google Scholar 

  20. Mellor HR, Callaghan R (2008) Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology 81:275–300

    Article  CAS  PubMed  Google Scholar 

  21. Pan ST, Li ZL, He ZX, Qiu JX, Zhou SF (2016) Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol 43:723–737

    Article  CAS  PubMed  Google Scholar 

  22. Pritchard JR, Lauffenburger DA, Hemann MT (2012) Understanding resistance to combination chemotherapy. Drug Resist Updates 15:249–257

    Article  CAS  Google Scholar 

  23. Arumov A, Trabolsi A, Schatz JH (2021) Potency meets precision in nano-optimized chemotherapeutics. Trends Biotechnol 39:974–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fymat AL (2017) Nano chemotherapy: an emergent anti-cancer modality. Glob J Nanomed 1:1–6

    Google Scholar 

  25. Jeon J (2019) Review of therapeutic applications of radiolabeled functional nanomaterials. Int J Mol Sci 20:2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu W, Pu Y, Shi J (2022) Nanomedicine-enabled chemotherapy-based synergetic cancer treatments. J Nanobiotechnol 20:1–21

    Article  Google Scholar 

  27. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu MJ, Zhang L (2012) Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 83:1104–1111

    Article  CAS  PubMed  Google Scholar 

  29. Lei F, Xi X, Batra SK, Bronich TK (2019) Combination therapies and drug delivery platforms in combating pancreatic cancer. J Pharmacol Exp Ther 370:682–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reza BM, Tina SH, Narges B, Evgeniya M, Sushil K, Bikul D, Herman Y (2017) Combination therapy in combating cancer. Oncotarget 8:3822–3843

    Google Scholar 

  31. Ku A, Facca VJ, Cai Z, Reilly RM (2019) Auger electrons for cancer therapy: a review. EJNMMI Radiopharm Chem 4:1–36

    Article  Google Scholar 

  32. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genom 21:440

    Article  CAS  Google Scholar 

  33. Pang B, De Jong J, Qiao X, Wessels LF, Neefjes J (2015) Chemical profiling of the genome with anti-cancer drugs defines target specificities. Nat Chem Biol 11:472–480

    Article  CAS  PubMed  Google Scholar 

  34. Pang B, Qiao X, Janssen L, Velds A, Groothuis T, Kerkhoven R, Nieuwland M, Ovaa H, Rottenberg S, Van Tellingen O (2013) Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nat Commun 4:1–13

    Article  CAS  Google Scholar 

  35. Araujo F, Proença F, Ferreira C, Ventilari S, Rosado de Castro P, Moreira R, Fonseca L, Souza S, Gutfilen B (2015) Use of 99mTc-doxorubicin scintigraphy in females with breast cancer: a pilot study. Br J Radiol 88:20150268

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bao A, Goins B, Klipper R, Negrete G, Phillips WT (2004) Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. J Pharmacol Exp Ther 308:419–425

    Article  CAS  PubMed  Google Scholar 

  37. Kumar P, Singh B, Ghai A, Hazari PP, Mittal B, Mishra AK (2015) Development of a single vial kit formulation of [99mTc]-labeled doxorubicin for tumor imaging and treatment response assessment-preclinical evaluation and preliminary human results. J Label Compd Radiopharm 58:242–249

    Article  CAS  Google Scholar 

  38. Kumar P, Watts A, Acharya P, Bansal R, Ghai A, Kaur A, Singh B (2016) Radiosynthesis of [18F]-fluorobenzoate-doxorubicin using acylation approach. Curr Radiopharm 9:215–221

    Article  CAS  PubMed  Google Scholar 

  39. Soundararajan A, Bao A, Phillips WT, Perez R, Goins BA (2009) [(186)Re]- Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model. Nucl Med Biol 36:515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soundararajan A, Bao A, Phillips WT, McManus LM, Goins BA (2011) Chemoradionuclide therapy with 186Re-labeled liposomal doxorubicin: toxicity, dosimetry, and therapeutic response. Cancer Biother Radiopharm 26:603–614

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu Y, Yu XM, Sun RJ, Pan XL (2017) Folate-functionalized lipid nanoemulsion to deliver chemo-radiotherapeutics together for the effective treatment of nasopharyngeal carcinoma. AAPS Pharm Sci Tech 18:1374–1381

    Article  CAS  Google Scholar 

  42. Ji A, Zhang Y, Lv G, Lin J, Qi N, Ji F, Du M (2018) 131I radiolabeled immune albumin nanospheres loaded with doxorubicin for in vivo combinatorial therapy. J Label Compd Radiopharm 61:362–369

    Article  CAS  Google Scholar 

  43. Zhu J, Yang J, Zhao L, Zhao P, Yang J, Zhao J, Miao W (2021) 131I-labeled multifunctional polyethylenimine/doxorubicin complexes with pH-controlled cellular uptake property for enhanced SPECT imaging and chemo/radiotherapy of tumors. Int J Nanomed 16:5167

    Article  Google Scholar 

  44. Cytryniak A, Nazaruk E, Bilewicz R, Górzyńska E, Żelechowska-Matysiak K, Walczak R, Mames A, Bilewicz A, Majkowska-Pilip A (2020) Lipidic cubic-phase nanoparticles (cubosomes) loaded with doxorubicin and labeled with 177Lu as a potential tool for combined chemo and internal radiotherapy for cancers. Nanomaterials 10:2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. El-Kawy O, Talaat H (2016) Preparation, characterization and evaluation of 186Re-idarubicin: a novel agent for diagnosis and treatment of hepatocellular carcinoma. J Label Compd Radiopharm 59:72–77

    Article  CAS  Google Scholar 

  46. El-Kawy O, Abdelaziz G (2022) Preparation, characterization and evaluation of [125I]-pirarubicin: a new therapeutic agent for urinary bladder cancer with potential for use as theranostic agent. Appl Radiat Isot 179:110007

    Article  CAS  PubMed  Google Scholar 

  47. Mizutani H, Hotta S, Nishimoto A, Ikemura K, Miyazawa D, Ikeda Y, Maeda T, Yoshikawa M, Hiraku Y, Kawanishi S (2017) Pirarubicin, an anthracycline anticancer agent, induces apoptosis through generation of hydrogen peroxide. Anticancer Res 37:6063–6069

    CAS  PubMed  Google Scholar 

  48. Alvarellos ML, Lamba J, Sangkuhl K, Thorn CF, Wang L, Klein DJ, Altman RB, Klein TE (2014) Pharm GKB summary: gemcitabine pathway. Pharmacogenet Genom 24:564–574

    Article  CAS  Google Scholar 

  49. Cerqueira NM, Fernandes PA, Ramos MJ (2007) Understanding ribonucleotidereductase inactivation by gemcitabine. Chem Eur J 13:8507–8515

    Article  CAS  PubMed  Google Scholar 

  50. Mini E, Nobili S, Caciagli B, Landini I, Mazzei T (2006) Cellular pharmacology of gemcitabine. Ann Oncol 17:v7–v12

    Article  PubMed  Google Scholar 

  51. Dhande R, Tyagi A, Sharma RK, Thakkar H (2017) Biodistribution study of 99mTc-gemcitabine-loaded spherulites in Sprague-Dawley rats by gamma scintigraphy to investigate its lung targeting potential. J Microencapsul 34:623–634

    Article  CAS  PubMed  Google Scholar 

  52. El-Mabhouh AA, Angelov CA, Cavell R, Mercer JR (2006) A 99mTc-labeled gemcitabine bisphosphonate drug conjugate as a probe to assess the potential for targeted chemotherapy of metastatic bone cancer. Nucl Med Biol 33:715–722

    Article  CAS  PubMed  Google Scholar 

  53. Ghosh S, Das T, Sarma HD, Dash A (2018) The potential of radiolabeled chemotherapeutics in tumor diagnosis: preliminary investigations with 68Ga-gemcitabine. Drug Dev Res 79:111–118

    Article  CAS  PubMed  Google Scholar 

  54. El-Mabhouh AA, Mercer JR (2008) 188Re-labelled gemcitabine/bisphosphonate (Gem/BP): a multi-functional, bone-specific agent as a potential treatment for bone metastases. Eur J Nucl Med 35:1240–1248

    Article  CAS  Google Scholar 

  55. Ghosh S, Das T, Sarma HD, Dash A (2017) Preparation and evaluation of 177Lu-Labeled gemcitabine: an effort toward developing radiolabeled chemotherapeutics for targeted therapy applications. Cancer Biother Radiopharm 32:239–246

    CAS  PubMed  Google Scholar 

  56. El-Ghany E, Mahdy M, Attallah K, Ghazy F (2002) Preparation of 125I-cytarabine and its radiochemical evaluation: model of radio-therapeutic agent. J Radioanal Nucl Chem 252:165–169

    Article  CAS  Google Scholar 

  57. Bayoumi NA, Amin AM, Ismail NS, Abouzid KA, El-Kolaly MT (2015) Radioiodination and biological evaluation of Cladribine as potential agent for tumor imaging and therapy. Radiochim Acta 103:777–787

    Article  CAS  Google Scholar 

  58. Areberg J, Johnsson A, Wennerberg J (2000) In vitro toxicity of 191Pt-labeled cisplatin to a human cervical carcinoma cell line (ME-180). Int J Radiat Oncol Biol Phys 46:1275–1280

    Article  CAS  PubMed  Google Scholar 

  59. Areberg J, Wennerberg J, Johnsson A, Norrgren K, Mattsson S (2001) Antitumor effect of radioactive cisplatin (191Pt) on nude mice. Int J Radiat Oncol Biol Phys 49:827–832

    Article  CAS  PubMed  Google Scholar 

  60. Bodnar EN, Dikiy MP, Medvedeva EP (2015) Photonuclear production and antitumor effect of radioactive cisplatin (195mPt). J Radioanal Nucl Chem 305:133–138

    Article  CAS  Google Scholar 

  61. Obata H, Tsuji AB, Sudo H, Sugyo A, Minegishi K, Nagatsu K, Ogawa M, Zhang MR (2021) In vitro evaluation of no-carrier-added radiolabeled cisplatin ([189,191Pt] cisplatin) emitting auger electrons. Int J Mol Sci 22:4622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tang QS, Chen DZ, Xue WQ, Xiang JY, Gong YC, Zhang L, Guo CQ (2011) Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo. Int J Nanomed 6:3077–3085

    CAS  Google Scholar 

  63. Amin A, Farrag N, AbdEl-Bary A (2014) Iodine-125-chlorambucil as possible radio anticancer for diagnosis and therapy of cancer: preparation and tissue distribution. J Pharm Res Int 4:1873–1885

    CAS  Google Scholar 

  64. Aslan O, Muftuler FZB, Kilcar AY, Ichedef C, Unak P (2012) In vivo biological evaluation of 131I radiolabeled-paclitaxel glucuronide (131I-PAC-G). Radiochim Acta 100:339–345

    Article  CAS  Google Scholar 

  65. Tian L, Chen Q, Yi X, Wang G, Chen J, Ning P, Yang K, Liu Z (2017) Radionuclide I-131 labeled albumin-paclitaxel nanoparticles for synergistic combined chemo-radioisotope therapy of cancer. Theranostics 7:614–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gibbens-Bandala B, Morales-Avila E, Ferro-Flores G, Santos-Cuevas C, Meléndez-Alafort L, Trujillo-Nolasco M, Ocampo-García B (2019) 177Lu-Bombesin-PLGA (paclitaxel): a targeted controlled-release nanomedicine for bimodal therapy of breast cancer. Mater Sci Eng C 105:110043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Das, T. Radiolabeled chemotherapeutics as a novel strategy for targeted cancer therapy: current insights and future perspectives. J Radioanal Nucl Chem 333, 1–15 (2024). https://doi.org/10.1007/s10967-023-09250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09250-3

Keywords

Navigation