Skip to main content
Log in

In situ electrochemical synthesis of Ni–Mg–Al–LDHs for the treatment of simulated strontium-containing liquid radioactive waste from nuclear power plants

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, in situ electrochemical synthesis of Ni–Mg–Al–LDHs for the treatment of simulated strontium-containing liquid radioactive waste (LRW) from nuclear power plants. The optimal reaction conditions were obtained by single-factor experiments: initial pH of 12, Mg electrode current density (JMg) of 12.5 mA/cm2, Ni–Mg–Al metal molar ratio (RNi_Mg–Al) of 3:1:1 and reaction temperature (T) of 30 °C. The removal rate of Sr2+ can reach up to 99.65%. The synthetic precipitate was characterized by XRD, FESEM-EDS and FT-IR under optimal reaction conditions. The XRD pattern showed that the main component of the precipitate is Ni–Mg–Al–LDHs. The precipitate was characterized by FESEM to have distinct layered double hydroxides (LDHs) structure. The absorption peaks of O–H bonds, C–O bonds, and M–O–M (M is Ni, Mg and Al) bonds appeared in IR spectrum. The method of in situ electrochemical synthesis of Ni–Mg–Al–LDHs has promising applications in the treatment of LRW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alby D, Charnay C, Heran M, Prelot B, Zajac J (2018) Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity—A review. J Hazard Mater 344:511–530. https://doi.org/10.1016/j.jhazmat.2017.10.047

    Article  CAS  PubMed  Google Scholar 

  2. Cohen-Solal M (2002) Strontium overload and toxicity: impact on renal osteodystrophy. Nephrol Dial Transpl 17:30–34. https://doi.org/10.1093/ndt/17.suppl_2.30

    Article  CAS  Google Scholar 

  3. Szabo J, Minamyer S (2014) Decontamination of radiological agents from drinking water infrastructure: a literature review and summary. Environ Int 72:129–132. https://doi.org/10.1016/j.envint.2014.01.020

    Article  CAS  PubMed  Google Scholar 

  4. Kusumkar VV, Galambos M, Viglasova E, Dano M, Smelkova J (2021) Ion-imprinted polymers: synthesis, characterization, and adsorption of radionuclides. Materials 14:1083–1112. https://doi.org/10.3390/ma14051083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ngwenya N, Chirwa EMN (2011) Biological removal of cationic fission products from nuclear wastewater. Water Sci Technol 63:124–128. https://doi.org/10.2166/wst.2011.021

    Article  CAS  PubMed  Google Scholar 

  6. Hodkin DJ, Stewart DI, Graham JT, Burke IT (2016) Coprecipitation of (14)C and Sr with carbonate precipitates: the importance of reaction kinetics and recrystallization pathways. Sci Total Environ 562:335–343. https://doi.org/10.1016/j.scitotenv.2016.03.192

    Article  CAS  PubMed  Google Scholar 

  7. Ivanets A, Milyutin V, Shashkova I, Kitikova N, Nekrasova N, Radkevich A (2020) Sorption of stable and radioactive Cs (I), Sr (II), Co (II) ions on Ti–Ca–Mg phosphates. J Radioanal Nucl Chem 324:1115–1123. https://doi.org/10.1007/s10967-020-07140-6

    Article  CAS  Google Scholar 

  8. Yuan H, Shao L, Huang L, Huang G (2019) Treatment of simulated radioactive Sr2+-containing wastewater by electrolysis of in-situ synthesis of manganese oxide. Ind Water Treat 1:82–86 (in Chinese)

    Google Scholar 

  9. Gürboğa G, Tel H (2005) Preparation of TiO2–SiO2 mixed gel spheres for strontium adsorption. J Hazard Mater 120(1–3):135–142. https://doi.org/10.1016/j.jhazmat.2004.12.037

    Article  CAS  PubMed  Google Scholar 

  10. Oh JM, Hwang SH, Choy JH (2002) The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ionics 151(1–4):285–291. https://doi.org/10.1016/j.jhazmat.2010.06.067

    Article  CAS  Google Scholar 

  11. Kannan S, Narayanan A, Swamy CS (1996) Effect of composition on the physicochemical properties of nickel aluminium hydrotalcites. J Mater Sci (UK) 31:2353–2360. https://doi.org/10.1007/bf01152946

    Article  CAS  Google Scholar 

  12. Pigna M, Dynes JJ, Violante A, Sommella A, Caporale AG (2016) Sorption of arsenite on Cu-Al, Mg-Al, Mg-Fe, and Zn-Al layered double hydroxides in the presence of inorganic anions commonly found in aquatic environments. Environ Eng Sci 33:98–104. https://doi.org/10.1089/ees.2015.0131

    Article  CAS  Google Scholar 

  13. Guo YW, Zhu ZL, Qiu YL, Zhao JF (2013) Enhanced adsorption of acid brown 14 dye on calcined Mg/Fe layered double hydroxide with memory effect. Chem Eng J 219:69–77. https://doi.org/10.1016/j.cej.2012.12.084

    Article  CAS  Google Scholar 

  14. Kovanda F, Kolousek D, Kalouskova R, Vymazal Z (2001) Starting production of synthetic hydrotalcite in the Czech Republic. Chem Listy 95:493–497

    CAS  Google Scholar 

  15. Shimamura A, Kanezaki E, Jones MI, Metson JB (2012) Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides. J Solid State Chem 186:116–123. https://doi.org/10.1016/j.jssc.2011.11.034

    Article  CAS  Google Scholar 

  16. Zhang H, Li K, Liang Z, Wan Y, Feng Z, Liu J, Wang M (2022) Replacement of interlayer anion via memory effect of layered double hydroxide: a promising strategy for fabricating nanostructures with better flame-retardant performance. J Phys Chem Solids 170:110932

    Article  CAS  Google Scholar 

  17. Iyi N, Ebina Y, Sasaki T (2011) Synthesis and characterization of water-swellable LDH (layered double hydroxide) hybrids containing sulfonate-type intercalant. J Mater Chem 21:8085–8095. https://doi.org/10.1039/c1jm10733j

    Article  CAS  Google Scholar 

  18. Barabi A, Seidi S, Rouhollahi A, Manouchehri M, Shanehsaz M, Rasouli F (2020) Electrochemically synthesized NiFe layered double hydroxide modified Cu(OH)2 needle-shaped nanoarrays: a novel sorbent for thin-film solid phase microextraction of antifungal drugs. Anal Chim Acta 1131:90–101. https://doi.org/10.1016/j.aca.2020.07.053

    Article  CAS  PubMed  Google Scholar 

  19. Huang X, Sun R, Li YL, Jiang JB, Li MJ, Xu WX, Wang YY, Cong HS, Tang JB, Han S (2022) Two-step electrodeposition synthesis of heterogeneous NiCo-layered double hydroxides@MoO3 nanocomposites on nickel foam with high performance for hybrid supercapacitors. Electrochim Acta 403:139680–139692. https://doi.org/10.1016/j.electacta.2021.139680

    Article  CAS  Google Scholar 

  20. Huang G, Jiang L, Shao L, Yang X, Huang J (2020) In situ electrochemical synthesis of Zn-Al layered double hydroxides for removal of strontium. Colloids Surf Physicochem Eng Asp 597:124785–124793. https://doi.org/10.1016/j.colsurfa.2020.124785

    Article  CAS  Google Scholar 

  21. Jiang L, Huang G, Shao L, Huang J, Peng S, Yang X (2021) In situ electrochemical synthesis of Zn-Al layered double hydroxides for removal of strontium: optimization and kinetics study. Colloids Surf Physicochem Eng Asp 608:125589–125596. https://doi.org/10.1016/j.colsurfa.2020.125589

    Article  CAS  Google Scholar 

  22. Peng SM, Jiang L, Yu X, Yang X, Huang GT (2021) Removal of strontium by in situ electrochemical synthesis of Zn-Al LDHs using a bidirectional pulse method. New J Chem 45:20915–20927. https://doi.org/10.1039/d1nj03502a

    Article  CAS  Google Scholar 

  23. Yang FC, Sun SQ, Chen XQ, Chang Y, Zha F, Lei ZG (2016) Mg-Al layered double hydroxides modified clay adsorbents for efficient removal of Pb2+, Cu2+ and Ni2+ from water. Appl Clay Sci 123:134–140. https://doi.org/10.1016/j.clay.2016.01.026

    Article  CAS  Google Scholar 

  24. Gao L, Deng S (2005) Study on spectrophotometric determination of strontium with dibromo-p-methylsulfonazo and its application. Metall Anal 25:65–66. https://doi.org/10.13228/j.issn.1000-7571.2005.06018

    Article  CAS  Google Scholar 

  25. Yin L, Hu Y, Ma R, Wen T, Wang X, Hu B, Wang X (2019) Smart construction of mesoporous carbon templated hierarchical Mg-Al and Ni-Al layered double hydroxides for remarkably enhanced U (VI) management. Chem Eng J 359:1550–1562. https://doi.org/10.1016/j.cej.2018.11.017

    Article  CAS  Google Scholar 

  26. Zha CC, Sun XL, Li N, Yu SM (2014) In-situ synthesis of hydrotalcite and its application in separation of simulated radionuclide Eu (III). Korean J Chem Eng 31:1859–1864. https://doi.org/10.1007/s11814-014-0132-1

    Article  CAS  Google Scholar 

  27. Tran HN, Nguyen DT, Le GT, Tomul F, Lima EC, Woo SH, Sarmah AK, Nguyen HQ, Nguyen PT, Nguyen DD, Nguyen TV, Vigneswaran S, Vo DVN, Chao HP (2019) Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: a systematic in-depth review. J Hazard Mater 373:258–270. https://doi.org/10.1016/j.jhazmat.2019.03.018

    Article  CAS  PubMed  Google Scholar 

  28. Cruz IO, Ribeiro NFP, Aranda DAG, Souza M (2008) Hydrogen production by aqueous-phase reforming of ethanol over nickel catalysts prepared from hydrotalcite precursors. Catal Commun 9:2606–2611. https://doi.org/10.1016/j.catcom.2008.07.031

    Article  CAS  Google Scholar 

  29. Yu X, Peng SM, Cao W, Huang GT (2022) Efficient adsorption of strontium by in situ electrochemical synthesis of monohydric phosphate intercalated layered double hydroxides. New J Chem 46:18190–18198. https://doi.org/10.1039/d2nj03311a

    Article  CAS  Google Scholar 

  30. Suvokhiaw S, Imyim A, Sukpirom N (2016) As(V) removal using a magnetic layered double hydroxide composite. Sep Sci Technol 51:2948–2957. https://doi.org/10.1080/01496395.2016.1231206

    Article  CAS  Google Scholar 

  31. Ma SL, Chen QM, Li H, Wang PL, Islam SM, Gu QY, Yang XJ, Kanatzidis MG (2014) Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides. J Mater Chem A 2:10280–10289. https://doi.org/10.1039/c4ta01203h

    Article  CAS  Google Scholar 

  32. Saiah FBD, Su BL, Bettahar N (2009) Nickel-iron layered double hydroxide (LDH): Textural properties upon hydrothermal treatments and application on dye sorption. J Hazard Mater 165:206–217. https://doi.org/10.1016/j.jhazmat.2008.09.125

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, Cai YW, Han TH, Fang M, Chen KC, Tan XL (2020) Phosphate functionalized layered double hydroxides (phos-LDH) for ultrafast and efficient U(VI) uptake from polluted solutions. J Hazard Mater 399:123081–123124. https://doi.org/10.1016/j.jhazmat.2020.123081

    Article  CAS  PubMed  Google Scholar 

  34. Tao Q, Reddy BJ, He HP, Frost RL, Yuan P, Zhu JX (2008) Synthesis and infrared spectroscopic characterization of selected layered double hydroxides containing divalent Ni and Co. Mater Chem Phys 112:869–875. https://doi.org/10.1016/j.matchemphys.2008.06.060

    Article  CAS  Google Scholar 

  35. Zhang XL, Dou YK, Gao CG, He CY, Gao JT, Zhao SJ, Deng LC (2019) Removal of Cd(II) by modified maifanite coated with Mg-layered double hydroxides in constructed rapid infiltration systems. Sci Total Environ 685:951–962. https://doi.org/10.1016/j.scitotenv.2019.06.228

    Article  CAS  PubMed  Google Scholar 

  36. Guo YD, Gong ZH, Li CX, Gao B, Li P, Wang XG, Zhang BC, Li XM (2020) Efficient removal of uranium (VI) by 3D hierarchical Mg/Fe-LDH supported nanoscale hydroxyapatite: A synthetic experimental and mechanism studies. Chem Eng J 392:123682–123737. https://doi.org/10.1016/j.cej.2019.123682

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the help of the analysts from Center of Analysis and Test, Laboratory for Resource and Environmental Education in East China University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

XH: Investigation, Writing—original draft. XY: Investigation, Formal analysis. WC: Investigation. XW: Investigation. SW: Investigation. GH: Conceptualization, Methodology, Resources.

Corresponding author

Correspondence to Guangtuan Huang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Yu, X., Cao, W. et al. In situ electrochemical synthesis of Ni–Mg–Al–LDHs for the treatment of simulated strontium-containing liquid radioactive waste from nuclear power plants. J Radioanal Nucl Chem 333, 411–420 (2024). https://doi.org/10.1007/s10967-023-09243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09243-2

Keywords

Navigation