Skip to main content
Log in

Electrochemical and thermodynamic properties of Pu(III) ions at the Mo electrode in LiCl–KCl eutectics

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To enhance the extraction of remaining fissile nuclides from spent nuclear fuel through pyrochemical reprocessing, the operational lifetime of such fuels can be extended, ultimately leading to increased cost efficiency and a reduction in the amount of radioactively contaminated waste generated by fast-neutron reactors. Understanding the electrochemical behavior of fissile nuclides in LiCl–KCl is pivotal to the success of molten salt electrorefining pyrochemical reprocessing. In this pursuit, a comprehensive study of Pu(III) salt was conducted to comprehend its electrochemical characteristics within molten chloride salt mixtures. To achieve this, PuCl3 was meticulously prepared by reacting PuO2 with HCl in a LiCl–KCl mixture. Subsequently, we investigated the reduction mechanism, the diffusion coefficient of Pu(III) (DPu(III)), and the apparent standard reduction potential of Pu(III)/Pu(0) (E0*Pu(III)/Pu(0)) in situ, using a Mo working cathode. Our findings revealed that Pu(III) undergoes a single-step reduction to Pu(0), involving the exchange of three electrons. Furthermore, the rate of diffusion governs the reduction of Pu(III) at the Mo cathode. The relationship between the diffusion coefficient and temperature was described by lnD = − 5.51 to 4244.2/T, with an activation energy of 35.28 kJ/mol. Additionally, we examined the temperature-dependent variations of E0*Pu(III)/Pu(0) and the Gibbs free energy of formation for PuCl3GPuCl3). These dependencies were found to be E0*Pu(III)/Pu(0) = − 3.194 + 6.4 × 10−4 T and ΔGPuCl3 = − 924.5 + 0.185 T, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Quan M, Liu Q, Liu Y, Zhang Z, Dai Y, Wang Y, Cao X, Cheng Z-p, Wang Y, Liu Y (2022) Electroextraction and thermochemistry of fission element gadolinium on plumbum electrode in molten salt. Sep Purif Technol 284:119413. https://doi.org/10.1016/j.seppur.2021.119413

    Article  CAS  Google Scholar 

  2. Nawada HP, Fukuda K (2004) Role of pyro-chemical processes in advanced fuel cycles. J Phys Chem Solids 66:647–651. https://doi.org/10.1016/j.jpcs.2004.07.022

    Article  CAS  Google Scholar 

  3. Masset P, Konings RJ, Malmbeck R, Serp J, Glatz J-P (2005) Thermodynamic properties of ternary Me-Ga-In (Me= La, U) alloys in a fused Ga-In/LiCl-KCl system. J Chem Thermodyn 344(1–3):173–179. https://doi.org/10.1016/j.jct.2018.10.014

    Article  CAS  Google Scholar 

  4. Im HJ, Yeon JW (2018) Comparison of the spectroscopic characteristics of uranium status when U (III) in LiCl-KCl eutectic melt is leached out with water and ionic liquid. J Lumin 196:302–305. https://doi.org/10.1016/j.jlumin.2017.12.037

    Article  CAS  Google Scholar 

  5. Zhang J (2014) Electrochemistry of actinides and fission products in molten salts—data review. J Nucl Mater 447:271–284. https://doi.org/10.1016/j.jnucmat.2013.12.017

    Article  CAS  Google Scholar 

  6. Sakamura Y, Shirai O, Iwai T, Suzuki Y (2001) Distribution behavior of Pu and americium in LiCl–KCl eutectic/liquid cadmium systems. J Alloys Compd 321(1):76–83. https://doi.org/10.1016/S0925-8388(01)00973-2

    Article  CAS  Google Scholar 

  7. Can Y, Acar BB (2022) Nuclear proliferation resistance assessment of fuel cycles closed with complete co-processing of spent fuel. Prog Nucl Energ 150:104297. https://doi.org/10.1016/j.pnucene.2022.104297

    Article  CAS  Google Scholar 

  8. Adamov E, Mochalov YS, Rachkov V, Khomyakov YS, Shadrin AY, Kascheev V, Khaperskaya A (2021) Spent nuclear fuel reprocessing and nuclear materials recycling in two-component nuclear energy. At Energy 130(1):29–35. https://doi.org/10.1007/s10512-021-00769-w

    Article  CAS  Google Scholar 

  9. Caravaca C, Laplace A, Vermeulen J, Lacquement J (2008) Determination of the E-pO2− stability diagram of Pu in the molten LiCl–KCl eutectic at 450°C. J Nucl Mater 377(2):340–347. https://doi.org/10.1016/j.jnucmat.2008.01.031

    Article  CAS  Google Scholar 

  10. Castrillejo Y, Bermejo M, Pardo R, Martınez A (2002) Use of electrochemical techniques for the study of solubilization processes of cerium–oxide compounds and recovery of the metal from molten chlorides. J Electrochem Soc 522:124–140. https://doi.org/10.1016/S0022-0728(02)00717-9

    Article  CAS  Google Scholar 

  11. Cordoba G, Caravaca C (2004) An electrochemical study of samarium ions in the molten eutectic LiCl + KCl. J Electrochem Soc 572:145–151. https://doi.org/10.1016/j.jelechem.2004.05.029

    Article  CAS  Google Scholar 

  12. Castrillejo Y, Bermejo M, Barrado E, Martínez A (2006) Electrochemical behaviour of erbium in the eutectic LiCl–KCl at W and Al electrodes. Electrochim Acta 51(10):1941–1951. https://doi.org/10.1016/j.electacta.2005.07.004

    Article  CAS  Google Scholar 

  13. Wu X, Wang Y, Hua Z, Weng H, Liu H, Zhao Z (2022) Electrochemical behavior and separation of dysprosium from molten NaCl-KCl eutectic by co-reduction with aluminum. Sep Purif Technol 301:122068. https://doi.org/10.1016/j.seppur.2022.122068

    Article  CAS  Google Scholar 

  14. Jiao S, Zhu H (2011) An investigation into the electrochemical recovery of rare earth ions in a CsCl-based molten salt. J Hazard Mater 189(3):821–826. https://doi.org/10.1016/j.jhazmat.2011.03.027

    Article  CAS  PubMed  Google Scholar 

  15. Wang C, Liu Y, Hu H, Gao GX, Liu L, Chang SW, Guo JH, Chang L, Ouyang Y (2013) Electrochemical behavior of cerium ion in molten LiCl-KCl. J Rare Earths 31:405–409. https://doi.org/10.1016/S1002-0721(12)60295-6

    Article  CAS  Google Scholar 

  16. Mendes E, Malmbeck R, Nourry C, Souček P, Glatz J-P (2012) On the electrochemical formation of Pu–Al alloys in molten LiCl–KCl. J Nucl Mater 420:424–429. https://doi.org/10.1016/j.jnucmat.2011.09.017

    Article  CAS  Google Scholar 

  17. Khalaghi B, Kvalheim E, Tokushige M, Teng L, Seetharaman S, Haarberg GM (2014) Electrochemical behaviour of dissolved iron chloride in KCl+LiCl+NaCl Melt at 550ºC. ECS Trans 64:301–310. https://doi.org/10.1149/06404.0301ecst

    Article  CAS  Google Scholar 

  18. Geran S, Chamelot P, Serp J, Gibilaro M, Massot L (2020) Electrochemistry of uranium in molten LiCl-LiF. Electrochim Acta 355:136784. https://doi.org/10.1016/j.electacta.2020.136784

    Article  CAS  Google Scholar 

  19. Shirai O, Iwai T, Suzuki Y, Sakamura Y, Tanaka H (1998) Electrochemical behavior of actinide ions in LiCl–KCl eutectic melts. J Alloys Compd 271–273:685–688. https://doi.org/10.1016/S0925-8388(98)00187-X

    Article  Google Scholar 

  20. Liu Z, Lu G, Yu J (2021) Investigation on electrochemical behaviors of MgCl2 impurity in LiCl-KCl melt. J Electrochem Soc 886:115131. https://doi.org/10.1016/j.jelechem.2021.115131

    Article  CAS  Google Scholar 

  21. Serp J, Konings R, Malmbeck R, Rebizant J, Scheppler C (2004) Glatz J-P (2004) Electrochemical behaviour of Pu ion in LiCl–KCl eutectic melts. J Electrochem Soc 561:143–148. https://doi.org/10.1016/j.jelechem.2003.07.027

    Article  CAS  Google Scholar 

  22. Yang Q, Ge J (2021) Zhang J (2021) Electrochemical study on the kinetic properties of Fe2+/Fe, Ni2+/Ni, Cr2+/Cr and Cr3+/Cr2+ in molten MgCl2-KCl-NaCl salts. J Electrochem Soc 168:012504. https://doi.org/10.1149/1945-7111/abdafc

    Article  CAS  Google Scholar 

  23. Saïla A, Gibilaro M, Massot L, Chamelot P, Taxil P, Affoune A-M (2010) Electrochemical behaviour of dysprosium(III) in LiF–CaF2 on Mo, Ni and Cu electrodes. J Electroanl Chem 642:150–156. https://doi.org/10.1016/j.jelechem.2010.03.002

    Article  CAS  Google Scholar 

  24. Osipenko A, Maershin A, Smolenski V, Novoselova A, Kormilitsyn M, Bychkov A (2011) Electrochemical behaviour of curium(III) ions in fused 3LiCl–2KCl eutectic. J Electrochem Soc 651:67–71. https://doi.org/10.1016/j.jelechem.2010.10.027

    Article  CAS  Google Scholar 

  25. Osipenko A, Maershin A, Smolenski V, Novoselova A, Kormilitsyn M, Bychkov A (2010) Electrochemistry of oxygen-free curium compounds in fused NaCl–2CsCl eutectic. J Nucl Mater 396:102–106. https://doi.org/10.1016/j.jnucmat.2009.10.061

    Article  CAS  Google Scholar 

  26. Yamada D, Murai T, Moritani K, Sasaki T, Takagi I, Moriyama H, Kinoshita K, Yamana H (2007) Diffusion behavior of actinide and lanthanide elements in molten salt for reductive extraction. J Alloys Compd 444–445:557–560. https://doi.org/10.1016/j.jallcom.2007.02.153

    Article  CAS  Google Scholar 

  27. Shirai O, Iwai T, Shiozawa K, Suzuki Y, Sakamura Y, Inoue T (2000) Electrolysis of Pu nitride in LiCl–KCl eutectic melts. J Nucl Mater 277:226–230. https://doi.org/10.1016/S0022-3115(99)00194-4

    Article  CAS  Google Scholar 

  28. Roy J, Grantham L, Grimmett D, Fusselman S, Krueger C, Storvick T, Inoue T, Sakamura Y, Takahashi N (1996) Thermodynamic properties of U, Np, Pu, and Am in molten LiCl-KCl eutectic and liquid cadmium. J Electrochem Soc 143:2487–2492. https://doi.org/10.1149/1.1837035

    Article  CAS  Google Scholar 

  29. Masset P, Konings RJ, Malmbeck R, Serp J (2005) Glatz J-P (2005) Thermochemical properties of lanthanides (Ln =La, Nd) and actinides (An = U, Np, Pu, Am) in the molten LiCl–KCl eutectic. J Nucl Mater 344:173–179. https://doi.org/10.1016/j.jnucmat.2005.04.038

    Article  CAS  Google Scholar 

  30. Marsden K, Pesic B (2011) Evaluation of the electrochemical behavior of CeCl3 in molten LiCl-KCl eutectic utilizing metallic Ce as an anode. J Electrochem Soc 158:F111–F120. https://doi.org/10.1149/1.3575637

    Article  CAS  Google Scholar 

  31. Tang H, Pesic B (2014) Electrochemical behavior of LaCl3 and morphology of La deposit on molybdenum substrate in molten LiCl–KCl eutectic salt. Electrochim Acta 119:120–130. https://doi.org/10.1016/j.electacta.2013.11.148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Grant No. U2167223).

Author information

Authors and Affiliations

Authors

Contributions

RL: Methodology, writing—original draft. ZM: Investigation, writing—original draft. YW: Data analysis. HC: Investigation. PS: Investigation. YJ: Data analysis YL: Writing—editing and review, supervision, resources. HH: Resources, methodology, writing − editing and review, supervision. GY: Conceptualization, writing—editing and review, supervision.

Corresponding authors

Correspondence to Rushan Lin or Guoan Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, R., Meng, Z., Wang, Y. et al. Electrochemical and thermodynamic properties of Pu(III) ions at the Mo electrode in LiCl–KCl eutectics. J Radioanal Nucl Chem 333, 23–30 (2024). https://doi.org/10.1007/s10967-023-09237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09237-0

Keywords

Navigation