Skip to main content
Log in

Study on the radon adsorption capability of low-background activated carbon

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radon is a significant background source in rare event detection experiments. Activated carbon (AC) adsorption is widely used for effective radon removal. The selection of AC considers its adsorption capacity and radioactive background. In this study, using self-developed devices, we screened and identified a new kind of low-background AC from Qingdao Inaf Technology Company that has very high Radon adsorption capacity. By adjusting the average pore size to 2.3 nm, this AC demonstrates a radon adsorption capacity of 2.6 or 4.7 times higher than Saratech or Carboact activated carbon under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. JUNO Collaboration (2022) JUNO physics and detector. Prog Part Nucl Phys 123:103927

    Article  Google Scholar 

  2. Alimonti G et al (2009) The Borexino detector at the Laboratori Nazionali Del Gran Sasso. Nucl Instrum Meth A 600:568–593

    Article  CAS  Google Scholar 

  3. Fukuda S et al (2003) The super-kamiokande detector. Nucl Instrum Meth A 501:418–462

    Article  CAS  Google Scholar 

  4. Aprile E et al (2017) The XENON1T dark matter experiment. Eur Phys J C 77:881

    Article  Google Scholar 

  5. Bonet H et al (2021) Constraints on elastic neutrino nucleus scattering in the fully coherent regime from the CONUS experiment. Phys Rev Lett 126:041804

    Article  CAS  PubMed  Google Scholar 

  6. Guo C et al (2020) The liquid argon detector and measurement of SiPM array at liquid argon temperature. Nucl Instrum Meth A 980:164488

    Article  CAS  Google Scholar 

  7. Baudis L et al (2018) A dual-phase xenon TPC for scintillation and ionization yield measurements in liquid xenon. Eur Phys J C 78:351

    Article  PubMed  Google Scholar 

  8. Akimov D et al (2018) COHERENT 2018 at the Spallation Neutron source. DOI arXiv:1803.09183

  9. Angloher G et al (2021) First measurements of remoTES cryogenic calorimeters:easy-to-fabricate particle detectors for a wide choice of target materials. Nucl Instrum Meth A 1045:167532

    Article  Google Scholar 

  10. Aprile E et al (2021) 222Rn emanation measurements for the XENON1T experiment. Eur Phys J C 81:337

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y et al (2023) System upgrade for µBq/m3 level 222Rn concentration measurement. JINST 18:T03002

    Article  Google Scholar 

  12. Simgen H et al (2009) Analysis of the 222Rn concentration in argon and a purification technique for gaseous and liquid argon. Appl Radiat Isot 67:922–925

    Article  CAS  PubMed  Google Scholar 

  13. Abe K et al (2012) Radon removal from gaseous xenon with activated charcoal. Nucl Instrum Meth A 661:50–57

    Article  CAS  Google Scholar 

  14. Pushkin K et al (2018) Study of radon reduction in gases for rare event search experiments. Nucl Instrum Meth A 903:267–276

    Article  CAS  Google Scholar 

  15. Nakano Y et al (2017) Measurement of radon concentration in Super-kamiokande’s buffer gas. Nucl Instrum Meth A 867:108–114

    Article  CAS  Google Scholar 

  16. Heusser G et al (2000) 222Rn detection at the µBq/m3 range in nitrogen gas and a new rn purification technique for liquid nitrogen. Appl Radiat Isot 52:691–695

    Article  CAS  PubMed  Google Scholar 

  17. Yu X et al (2020) Radon activity measurement of JUNO nitrogen. JINST 15:P09001

    Article  CAS  Google Scholar 

  18. Saratech charcoal specification. https://www.bluecher.com/en/. Accessed 13 July 2023

  19. Carboact charcoal specification. https://www.carboactinternational.com/. Accessed 13 July 2023

  20. Hanchurak Stephen R (2014) Development of a high sensitivity radon emanation detector. University of Alberta, Canada

    Google Scholar 

  21. Soule B (2013) Radon emanation chamber: high sensitivity measurements for the SuperNEMO experiment. AIP Conf Proc 1549:98–101

    Article  CAS  Google Scholar 

  22. Chen YY et al (2022) A study on the radon removal performance of low background activated carbon. JINST 17:P02003

    Article  Google Scholar 

  23. Guo L et al (2017) The temperature dependence of adsorption coefficients of 222Rn on activated charcoal: an experimental study. Appl Radiat Isot 125:185–187

    Article  CAS  PubMed  Google Scholar 

  24. Nakano Y et al (2020) Evaluation of radon adsorption efficiency values in xenon with activated carbon fibers. Prog Theor Exp Phys 2020:13H01

    Article  Google Scholar 

  25. Qiao B et al (2011) Dynamic adsorption properties of activated carbon for radioactive noble gas treatment in offshore floating nuclear power plant. J Radioanal Nucl Chem 327:207–215

    Article  Google Scholar 

  26. Wang F et al (2023) Radon dynamic adsorption coefficients of two activated charcoals at different temperatures in nitrogen environment. Appl Radiat Isot 191:110564

    Article  CAS  PubMed  Google Scholar 

  27. Li C et al (2022) Construction of a low-temperature activated carbon radon adsorption system using air cooler. J Radio-anal Nucl Chem 331:1839–1845

    Article  CAS  Google Scholar 

  28. Wang Q et al (2011) An experimental study on radon adsorption ability and microstructure of activated carbon. Nucl Sci Eng 168(3):287–292

    Article  CAS  Google Scholar 

  29. Aalseth CE et al (2020) Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon. JINST 15:P02024

    Article  Google Scholar 

  30. Rupp N (2017) Radon background in liquid xenon detectors. JINST 13:C02001

    Article  Google Scholar 

  31. Agnes P et al (2019) Measurement of the ion fraction and mobility of 218Po produced in 222Rn decays in liquid argon. JINST 14:P11018

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the State Key Laboratory of Particle Detection and Electronics (Grant No. SKLPDE-ZZ-202304), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2023015), and the Yalong River Joint Fund of the National Natural Science Foundation of China and Yalong River Hydropower Development Co., LTD (Grant No. U1865208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong Guo or Quan Tang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, Y., Lv, L. et al. Study on the radon adsorption capability of low-background activated carbon. J Radioanal Nucl Chem 333, 337–346 (2024). https://doi.org/10.1007/s10967-023-09211-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09211-w

Keywords

Navigation