Skip to main content
Log in

Assessment of human health risk due to heavy metals accumulation through marine fish consumption in Andhra Pradesh

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

For the present study, two marine fish species Ariomma indica and Dasyatus bleekeri were collected from Visakhapatnam and Kakinada harbours, Pudimadaka, and Bheemili that lie along the Andhra Pradesh coast. The concentrations of As, Cd, Cu, Fe, Mn, Se, and Zn in the muscle tissues were determined by using EDXRF. The Estimated daily intake of those metals was evaluated and found to be higher than the reference dose levels. The calculated values of Target hazard quotient and Hazard index of those metals indicate no potential risk. Target cancer risk due to accumulation of As and Cd was determined and found to be in the acceptable range. However, the intake of heavy metals is influenced by the dietary habits of consumers and long-term exposure may show negative impact on their health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Daniels JL, Longnecker MP, Rowland AS, Golding J, ALSPAC Study Team-University of Bristol Institute of Child Health (2004) Fish intake during pregnancy and early cognitive development of offspring. Epidemiology 394–402

  2. Neff MR, Bhavsar SP, Ni FJ, Carpenter DO, Drouillard K, Fisk AT, Arts MT (2014) Risk-benefit of consuming Lake Erie fish. Environ Res 134:57–65

    Article  CAS  PubMed  Google Scholar 

  3. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106(21):2747–2757

    Article  PubMed  Google Scholar 

  4. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, Schneider J (2003) Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 60(7):940–946

    Article  PubMed  Google Scholar 

  5. Ismail HM (2005) The role of omega-3 fatty acids in cardiac protection: an overview. Front Biosci-Landmark 10(2):1079–1088

    Article  CAS  Google Scholar 

  6. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  7. Lana R, Vavrova M, Navratil S, Brabencova E, Vecerek V (2010) Organochlorine pollutants in chub, Leuciscus cephalus, from the Svratka River, Czech Republic. Bull Environ Contam Toxicol 84:726–730

    Article  CAS  PubMed  Google Scholar 

  8. Zeitoun MM, Mehana EE (2014) Impact of water pollution with heavy metals on fish health: overview and updates. Glob Vet 12:219–231

    Google Scholar 

  9. Munaretto JS, Ferronato G, Ribeiro LC, Martins ML, Adaime MB, Zanella R (2013) Development of a multiresidue method for the determination of endocrine disrupters in fish fillet using gas chromatography–triple quadrupole tandem mass spectrometry. Talanta 116:827–834

    Article  CAS  PubMed  Google Scholar 

  10. Baki MA, Hossain MM, Akter J, Quraishi SB, Shojib MFH, Ullah AA, Khan MF (2018) Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol Environ Safe 159:153–163

    Article  Google Scholar 

  11. Rushinadha Rao K, Sreedhar U, Sreeramulu K (2016) Spatial variation of heavy metal accumulation in coastal sea water, east coast of Andhra Pradesh, India

  12. Chaitanya I, Gayathri C, Byragireddy T (2017) Heavy metal accumulation in commercial fish species of Bheemili, Visakhapatnam, Andhra Pradesh, India. Int J Appl Res 3:320–324

    Google Scholar 

  13. Pragnya M, Kumar SD, Raju AS, Murthy LN (2020) Bioaccumulation of heavy metals in different organs of Labeorohita, Pangasius hypophthalmus, and Katsuwonus pelamis from Visakhapatnam, India. Mar Pollut Bull 157:111326

    Article  CAS  PubMed  Google Scholar 

  14. Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta Part B 62(1):63–68

    Article  Google Scholar 

  15. MAFF (1995) Monitoring and surveillance of non-radioactive contaminants in the aquatic environment and activities regulating the disposal of waters at sea, 1993. Aquatic Environment Monitoring Report No. 44. Direcorate of Fisheries Research, Lowestoft

  16. Food and Agricultural Organization/World Health Organization (1989) Evaluation of certain food additives and the contaminants mercury, lead and Cadmium. Geneva: World Health Organization;. Technical Report Series No. 505

  17. Anonymous (2008) Regulation of setting Maximum Levels for certain contaminants in Foodstuffs. Official Gazette, 17 May, 2008, issue 26879

  18. Tariq J, Jaffar M, Moazzam M (1991) Concentration correlations between major cations and heavy metals in fish from the Arabian Sea. Mar Pollut Bull 22(11):562–565

    Article  CAS  Google Scholar 

  19. El-Moselhy KM, Othman AI, Abd El-Azem H, El-Metwally MEA (2014) Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypt J Basic Appl Sci 1(2):97–105

    Google Scholar 

  20. Ali H, Khan E (2018) Assessment of potentially toxic heavy metals and health risk in water, sediments, and different fish species of River Kabul, Pakistan. Hum Ecol Risk Assess: Int J 24(8):2101–2118

    Article  CAS  Google Scholar 

  21. Mazrouh MM, Mourad MH (2019) Biochemical composition and bioaccumulation of heavy metals in some seafood in the Mediterranean Coast of Egypt. Egypt J Aquat Biol Fisheries 23(1):381–390

    Article  Google Scholar 

  22. Twardowska I, Stefaniak S, Allen HE, Häggblom MM (eds) (2007) Soil and water pollution monitoring, protection and remediation, vol 69. Springer

  23. Williams PN, Lei M, Sun G, Huang Q, Lu Y, Deacon C, Zhu YG (2009) Occurrence and partitioning of Cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ Sci Technol 43(3):637–642

    Article  CAS  PubMed  Google Scholar 

  24. Hutton M (1983) Sources of Cadmium in the environment. Ecotoxicol Environ Saf 7(1):9–24

    Article  CAS  PubMed  Google Scholar 

  25. Tamele IJ, Vázquez Loureiro P (2020) Lead, mercury and cadmium in fish and shellfish from the Indian Ocean and Red Sea (African Countries): public health challenges. J Mar Sci Eng 8(5):344

    Article  Google Scholar 

  26. Soliman ZI (2006) A study of heavy metals pollution in some aquatic organisms in Suez Canal in Port-Said Harbour. J Appl Sci Res 2(10):657–663

    Google Scholar 

  27. Ray S (1984) Bioaccumulation of Cadmium in marine organisms. Experientia 40(1):14–23

    Article  CAS  Google Scholar 

  28. FDA U (1993) Arsenic enrichment in sediment on the eastern continental shelf. US Food and Drug Administration.Washington, DC, pp 25–27

  29. Ray S, McLeese DW (1983) Factors affecting uptake of Cadmium and other trace metals from marine sediments by some bottom-dwelling marine invertebrates. Dredged-Material Disposal in the Ocean, Wastes in the Ocean, 2

  30. Yang HN, Chen HC (1996) Uptake and elimination of Cadmium by Japanese eel, Anguilla japonica, at various temperatures. Bull Environ Contamination Toxicol 56(4)

  31. Han JM, Park HJ, Kim JH, Jeong DS, Kang JC (2019) Toxic effects of arsenic on growth, hematological parameters, and plasma components of starry flounder, Platichthysstellatus, at two water temperature conditions. Fisheries Aquat Sci 22(1):1–8

    Google Scholar 

  32. Oliveira LH, Ferreira NS, Oliveira A, Nogueira ARA, Gonzalez MH (2017) Evaluation of distribution and bioaccumulation of arsenic by ICP-MS in tilapia (Oreochromis niloticus) cultivated in different environments. J Braz Chem Soc 28:2455–2463

    CAS  Google Scholar 

  33. Haedrich RL (1984) Ariommidae. In: Fischer W, Bianchi G (eds) FAO species identification sheets for fishery purposes. Western Indian Ocean fishing area 51. vol. 1

  34. Schmitt CJ, Brumbaugh WG (1990) National contaminant biomonitoring program: concentrations of arsenic, Cadmium, copper, lead, mercury, selenium, and zinc in US freshwater fish, 1976–1984. Arch Environ Contam Toxicol 19(5):731–747

    Article  CAS  PubMed  Google Scholar 

  35. Peshut PJ, Morrison RJ, Brooks BA (2008) Arsenic speciation in marine fish and shellfish from American Samoa. Chemosphere 71(3):484–492

    Article  CAS  PubMed  Google Scholar 

  36. Flowers KI, Heithaus MR, Papastamatiou YP (2021) Buried in the sand: Uncovering the ecological roles and importance of rays. Fish Fish 22(1):105–127

    Article  Google Scholar 

  37. Olsson PE, Kling P, Hogstrand C (1998) Mechanisms of heavy metal accumulation and toxicity in fish. In: Metal metabolism in aquatic environments Springer, Boston, MA, pp 321–350

  38. Goyer RA, Clarkson TW (2001) Toxic effects of metals. In: Casarett and Doullis toxicology: the basic science of poisons, (CD Klaassen, ed.) Mc-Graw Hill, New York, 81

  39. Bhattacharyya MH, Sacco-Gibson NA, Peterson DP (1992) Cadmium-induced bone loss: Increased susceptibility in female beagles after ovariectomy. IARC Sci Publ, 279–286

  40. Sharma B, Singh S, Siddiqi NJ (2014) Biomedical implications of heavy metals induced imbalances in redox systems. BioMed Res Int

  41. Ashraf MA, Maah MJ, Yusoff I (2012) Bioaccumulation of heavy metals in fish species collected from former tin mining catchment

  42. Venkateswarlu V, Venkatrayulu C (2020) Bioaccumulation of heavy metals in edible marine fish from coastal areas of Nellore, Andhra Pradesh, India. GSC Biol Pharmaceutical Sci 10(1):018–024

    Article  CAS  Google Scholar 

  43. Mangalagiri P, Bikkina A, Sundarraj DK, Thatiparthi BR (2020) Bioaccumulation of heavy metals in Rastrelligerkanagurta along the coastal waters of Visakhapatnam, India. Mar Pollut Bull 160:111658

    Article  CAS  PubMed  Google Scholar 

  44. Krishna PV, Jyothirmayi V, Rao KM (2014) Human health risk assessment of heavy metal accumulation through fish consumption, from Machilipatnam Coast, Andhra Pradesh, India. J Issues ISSN, 2360, 8803

  45. Patra AC, Mohapatra S, Kumar AV, Ravi PM, Tripathi RM (2015) Applying INAA to assess dietary intake of elements through fish from coastal areas near Vishakhapatnam, India. J Radioanal Nucl Chem 303(1):315–323

    Article  CAS  Google Scholar 

  46. Annabi A, Bardelli R, Vizzini S, Mancinelli G (2018) Baseline assessment of heavy metals content and trophic position of the invasive blue swimming crab Portunussegnis (Forskål, 1775) in the Gulf of Gabès (Tunisia). Mar Pollut Bull 136:454–463

    Article  CAS  PubMed  Google Scholar 

  47. Alamdar A, Eqani SAMAS, Hanif N, Ali SM, Fasola M, Bokhari H, Shen H (2017) Human exposure to trace metals and arsenic via consumption of fish from river Chenab, Pakistan and associated health risks. Chemosphere 168:1004–1012

    Article  CAS  PubMed  Google Scholar 

  48. Islam MS, Ahmed MK, Raknuzzaman M, Habibullah-Al-Mamun M, Masunaga S (2015) Metal speciation in sediment and their bioaccumulation in fish species of three urban rivers in Bangladesh. Arch Environ Contam Toxicol 68(1):92–106

    Article  CAS  PubMed  Google Scholar 

  49. Ansari TM, Saeed MA, Raza A, Naeem M, Salam A (2006) Effect of body size on metal concentrations in wild Puntius chola. Pak J Anal Environ Chem 7(2):4

    Google Scholar 

  50. Alipour H, Pourkhabbaz A, Hassanpour M (2015) Estimation of potential health risks for some metallic elements by consumption of fish. Water Qual Expo Health 7(2):179–185

    Article  CAS  Google Scholar 

  51. Reddy MS, Bhavesh M, Sunil D, Manish J, Leena K, Sarma VKS, Shaik B, Gadde R, Prashant B (2007) Bioaccumulation of heavy metals in some commercial fishes and crabs of the Gulf of Cambay, India. Curr Sci Assoc 92(11):1489–1491

    CAS  Google Scholar 

  52. Sivaperumal P, Sankar TV, Nair PV (2007) Heavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-a-vis international standards. Food Chem 102(3):612–620

    Article  CAS  Google Scholar 

  53. Moreno JA, Yeomans EC, Streifel KM, Brattin BL, Taylor RJ, Tjalkens RB (2009) Age-dependent susceptibility to manganese-induced neurological dysfunction. Toxicol Sci 112(2):394–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bashir FH, Othman MS, Mazlan AG, Rahim SM, Simon KD (2013) Heavy metal concentration in fishes from the coastal waters of Kapar and Mersing, Malaysia. Turkish J Fisheries Aquat Sci 13(2)

  55. Ahmed M, Baki MA, Islam M, Kundu GK, Habibullah-Al-Mamun M, Sarkar SK, Hossain M (2015) Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga, Bangladesh. Environ Sci Pollut Res 22(20):15880–15890

    Article  CAS  Google Scholar 

  56. Görür FK, Keser RECEP, Akçay NİLAY, Dizman SERDAR (2012) Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey. Chemosphere 87(4):356–361

    Article  Google Scholar 

  57. Coyle JJ, Buckler DR, Ingersoll CG, Fairchild JF, May TW (1993) Effect of dietary selenium on the reproductive success of bluegills (Lepomis macrochirus). Environ Toxicol Chem: Int J 12(3):551–565

    Article  CAS  Google Scholar 

  58. Kawser Ahmed M, Baki MA, Kundu GK, Islam S, Islam M, Hossain M (2016) Human health risks from heavy metals in fish of Buriganga river, Bangladesh. Springerplus 5(1):1–12

    Article  CAS  Google Scholar 

  59. Noël L, Chekri R, Millour S, Vastel C, Kadar A, Sirot V, Guérin T (2012) Li, Cr, Mn Co, Ni, Cu, Zn, Se and Mo levels in foodstuffs from the Second French TDS. Food Chem 132(3):1502–1513

    Article  PubMed  Google Scholar 

  60. Mansilla-Rivera I, Rodríguez-Sierra CJ (2011) Metal levels in fish captured in Puerto Rico and estimation of risk from fish consumption. Arch Environ Contam Toxicol 60(1):132–144

    Article  CAS  PubMed  Google Scholar 

  61. Barone G, Dambrosio A, Storelli A, Garofalo R, Busco VP, Storelli MM (2018) Estimated dietary intake of trace metals from swordfish consumption: a human health problem. Toxics 6(2):22

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mitra A, Barua P, Zaman S, Banerjee K (2012) Analysis of trace metals in commercially important crustaceans collected from UNESCO protected world heritage site of Indian Sundarbans. Turk J Fish Aquat Sci 12(1):53–66

    Article  Google Scholar 

  63. USEPA (United States Environmental Protection Agency) (2015) Risk based screening Table (http://www.epa.gov/risk_assessment/health-risk.htm)

  64. USEPA (United States Environmental Protection Agency) (2012) EPA Region III Risk-Based Concentration (RBC) Table 2008 Region III, 1650 Arch Street, Philadelphia, Pennsylvania 19103(http://countryeconomy.com/demography/life-expectancy/India)

  65. Liang H, Wu WL, Zhang YH, Zhou SJ, Long CY, Wen J, Zou F (2018) Levels, temporal trend and health risk assessment of five heavy metals in fresh vegeTables marketed in Guangdong Province of China during 2014–2017. Food Control 9:107–120

    Article  Google Scholar 

  66. Liu H, Liu G, Yuan Z, Ge M, Wang S, Liu Y, Da C (2019) Occurrence, potential health risk of heavy metals in aquatic organisms from Laizhou Bay, China. Mar Pollut Bull 140:388–394

    Article  CAS  PubMed  Google Scholar 

  67. Bo SONG, Mei LEI, Tongbin CHEN, Zheng Y, Yunfeng XIE, Xiaoyan LI, Ding GAO (2009) Assessing the health risk of heavy metals in vegeTables to the general population in Beijing, China. J Environ Sci 21(12):1702–1709

    Article  Google Scholar 

  68. Speedy AW (2003) Global production and consumption of animal source foods. J Nutr 133(11):4048S-4053S

    Article  CAS  PubMed  Google Scholar 

  69. Little DC, Kundu N, Mukherjee M, Barman BK (2002) Marketing of fish from peri-urban Kolkata. Institute of Aquaculture, University of Stirling

  70. Shukla HC, Gupta PC, Mehta HC, Hébert JR (2002) Descriptive epidemiology of body mass index of an urban adult population in western India. J Epidemiol Community Health 56(11):876–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Harmanescu M, Alda LM, Bordean DM, Gogoasa I, Gergen I (2011) Heavy metals health risk assessment for population via consumption of vegeTables grown in old mining area; a case study: Banat County, Romania. Chem Central J 5(1):1–10

    Article  Google Scholar 

  72. Miri M, Akbari E, Amrane A, Jafari SJ, Eslami H, Hoseinzadeh E, Taghavi M (2017) Health risk assessment of heavy metal intake due to fish consumption in the Sistan region, Iran. Environ Monitor Assessment 189(11):1–10

    Article  CAS  Google Scholar 

  73. Huang X, Qin D, Gao L, Hao Q, Chen Z, Wang P, Qiu W (2019) Distribution, contents and health risk assessment of heavy metal (loid) s in fish from different water bodies in Northeast China. RSC Adv 9(57):33130–33139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Abdou HM, Hassan MA (2014) Protective role of omega-3 polyunsaturated fatty acid against lead acetate-induced toxicity in liver and kidney of female rats. BioMed Res Int

  75. Łuczyńska J, Paszczyk B, Łuczyński MJ (2018) Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer’s health. Ecotoxicol Environ Saf 153:60–67

    Article  PubMed  Google Scholar 

  76. United States Environmental Protection Agency (USEPA) (2011) USEPA Regional Screening Level (RSL) Summary Table: November 2011. Available at: http://www.epa.gov/regshwmd/risk/human/Index.htm, last update: 20th January, 2014

  77. Islam MS, Ahmed MK, Habibullah-Al-Mamun M, Islam KN, Ibrahim M, Masunaga S (2014) Arsenic and lead in foods: a potential threat to human health in Bangladesh. Food Addit Contaminants: Part A 31(12):1982–1992

    Article  CAS  Google Scholar 

  78. Zodape GV (2014) Metal contamination in commercially important prawns and shrimps species collected from Kolaba market of Mumbai (west coast) India. Int J Agrisci 4:160–169

    Google Scholar 

  79. Bhupander K, Mukherjee DP (2011) Assessment of human health risk for arsenic, copper, nickel, mercury and zinc in fish collected from tropical wetlands in India. Adv Life Sci Technol 2:13–24

    Google Scholar 

  80. NYSDOH (New York State Department of Health) (2007) Hopewell precision area contamination: appendix C-NYS DOH. Procedure for evaluating potential health risks for contaminants of concern. http://www.health.ny.gov/environmental/investigations/hopewell/appendc.htm

Download references

Acknowledgements

The authors are so thankful to Dr. Sandeep Ghugre, UGC-DAE CSR Kolkata centre, for granting the necessary permissions and providing EDXRF facility to carry out this work successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jaya Sree.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaya Sree, A., Srinivasulu, A., Panigrahi, T. et al. Assessment of human health risk due to heavy metals accumulation through marine fish consumption in Andhra Pradesh. J Radioanal Nucl Chem 332, 5211–5223 (2023). https://doi.org/10.1007/s10967-023-09201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09201-y

Keywords

Navigation