Skip to main content
Log in

Method to prevent accidental ruthenium volatilization from high-level liquid waste using alkaline earth hydroxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We investigated a method to prevent RuO4 formation from a heated high-level liquid waste (HLLW) in a severe accident in a reprocessing facility. When the alkali or alkaline earth hydroxides were added in excess of the point of neutralization of HLLW, the amount of RuO4 released was significantly suppressed to less than 1% of that without hydroxide addition. Alkaline earth hydroxides would be more suitable for actual use, because alkali hydroxides enhance RuO4 release by an addition below the equivalent neutralization whereas alkaline earth hydroxides do not have such effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Philippe M, Mercier JP, Gue JP.(1990), In: Proc. 21st DOE/NRC Nucl., Air Cleaning Conf., NUREG/CP-116 2, pp 831–843.

  2. Yamaguchi A, Yokotsuka M, Furuta M, Kubota K, Fujine S, Mori K, Yoshida N, Amano Y, Abe H (2022). Trans At Energy Soc Jpn. https://doi.org/10.3327/taesj.J21.021

    Article  Google Scholar 

  3. Tashiro S, Uchiyama G, Amano H, Abe H, Yamane Y, Yoshida K (2015) Nucl Technol 190(2):207–213. https://doi.org/10.13182/NT14-57

    Article  Google Scholar 

  4. Tashiro S, Amano Y, Yoshida K, Yamane Y, Uchiyama G, Abe H (2015) Trans At Energy Soc Jpn 14(4):227–234. https://doi.org/10.3327/taesj.J14.028

    Article  CAS  Google Scholar 

  5. Nuclear Regulation Authority (Japan) (2013) Outlook of the draft new regulatory requirements for nuclear fuel facilities, research reactors, and nuclear waste storage/disposal facilities

  6. Yamane Y, Amano Y, Tashiro S, Abe H, Uchiyama G, Yoshida K, Ishikawa J (2016) J Nucl Sci Technol 53(6):783–789. https://doi.org/10.1080/00223131.2015.1072065

    Article  CAS  Google Scholar 

  7. Yoshida K, Tashiro S, Amano Y, Yamane Y, Uchiyama G, Abe H (2014). Trans At Energy Soc Jpn. https://doi.org/10.3327/taesj.J14.010

    Article  Google Scholar 

  8. Amano Y, Tashir S, Uchiyama G, Abe H, Yamane Y, Yoshida K (2013) In: Proc. GLOBAL2013, Salt Lake City, Utah, September 29–October 3

  9. Kato T, Usami T, Tsukada T, Shibata Y, Kodama T (2016) J Nucl Mater 479:123–129

    Article  CAS  Google Scholar 

  10. Sekiguchi Y, Kato T, Usami T (2022) In: Proc. GLOBAL2022, Reims, France

  11. Nerisson P, Barrachin M, Ohnet MN, Cantrel L (2022) J Radioanal Nucl Ch 331:3365–3389. https://doi.org/10.1007/s10967-022-08420-z

    Article  CAS  Google Scholar 

  12. Mun C, Cantrel L, Madic C (2007) Radiochim Acta 95:643–656. https://doi.org/10.1524/ract.2007.95.11.643

    Article  CAS  Google Scholar 

  13. Kodama T, Shibata Y, Takahashi N, Matsuoka S, Kumagai M, Hayashi S, Suzuki K (2014) J Nucl Sci Technol 52(4):467–471. https://doi.org/10.1080/00223131.2014.972476

    Article  CAS  Google Scholar 

  14. Yoshida N, Ohno T, Amano Y, Abe H (2018) J Nucl Sci Technol 55(6):599–604. https://doi.org/10.1080/00223131.2018.1428121

    Article  CAS  Google Scholar 

  15. Yoshida N, Ono T, Yoshida R, Amano Y, Abe H (2020) J Nucl Sci Technol 57(11):1256–1264. https://doi.org/10.1080/00223131.2020.1780991

    Article  CAS  Google Scholar 

  16. Sasahira A, Hoshikawa T, Kamoshida M, Kawamura F (1996) J Nucl Sci Technol 33(10):753–757. https://doi.org/10.1080/18811248.1996.9731999

    Article  CAS  Google Scholar 

  17. Ishio T, Shibata Y, Kodama T, Kato T, Tsukada T, Serrano-Purroy D, Glatz JP (2015) In: Proc. GLOBAL2015, 5164, Paris, France, September 20–24

  18. Ohnet MN, Boucault K, Nerisson P, Bagnol T, Cantrel L (2022) J Radioanal Nucl Ch 331:2939–2953. https://doi.org/10.1007/s10967-022-08351-9

    Article  CAS  Google Scholar 

  19. Bray LA (1963) Denitration of PUREX Wastes with sugar. HW-76973 Rev. UC-70, Waste Disposal and Processing, (TID-4500, 27th Ed.)

  20. Kepk F, Koutová S, Kočiřík M, Zikánová A (1992) J Radioanal Nucl Ch 159:317–334. https://doi.org/10.1007/BF02040726

    Article  Google Scholar 

  21. Nerisson P, Hu H, Paul JF, Cantrel L, Vesin C (2019) J Radioanal Nucl Ch 321:591–598. https://doi.org/10.1007/s10967-019-06612-8

    Article  CAS  Google Scholar 

  22. Leloire M, Nerisson P, Pourpoint F, Huvé M, Paul JF, Cantrel L, Loiseau T, Volkringer C (2022) Dalton T 51:16170–16180. https://doi.org/10.1039/D2DT02371G

    Article  CAS  Google Scholar 

  23. Kodama T, Nakano M, Hayashi Y, Matsuoka S, Ito Y, Matsuura C, Shiraishi H, Katsumura Y (2017) Nucl Technol 172(1):77–87. https://doi.org/10.13182/NT09-90

    Article  Google Scholar 

  24. Tagawa H (1987) Bull Inst Environ Sci Technol Yokohama Natl Univ 14:41–57

    CAS  Google Scholar 

Download references

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. The authors acknowledge the unfailing assistance of A. Kobayashi and S. Kato of Electric Power Engineering Systems Co., Ltd., in conducting the present experiment including the chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuma Sekiguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekiguchi, Y., Kato, T., Uruga, K. et al. Method to prevent accidental ruthenium volatilization from high-level liquid waste using alkaline earth hydroxide. J Radioanal Nucl Chem 333, 347–355 (2024). https://doi.org/10.1007/s10967-023-09199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09199-3

Keywords

Navigation