Skip to main content
Log in

Uptake behavior of arsenic and selenium with sulfur-based extraction chromatography resins in HCl and HNO3 media

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The uptake behavior of 73As and 75Se was studied in HCl and HNO3 media with CL resin, ethanethiol resin and dimethyl sulfide resin. In HCl solutions, there was high extraction of selenium on CL resin and ethanethiol resin but lower uptake on dimethyl sulfide resin; arsenic was only extracted by CL resin. From HNO3, selenium was extracted only by ethanethiol resin and CL resin and there was no uptake of arsenic on any resin. While the sulfur-based resins have high selenium uptake and selectivity, column separations are challenging due to the chemical instability of these resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siri S, Segovia MS, Cohen IM (2019) The production of no carrier added arsenic radioisotopes in nuclear reactors. J Radioanal Nucl Chem 319:175–184

    Article  CAS  Google Scholar 

  2. Chattopadhyay S, Pal S, Vimalnath KV, Das MK (2007) A versatile technique for radiochemical separation of medically useful no-carrier-added (nca) radioarsenic from irradiated germanium oxide targets. Appl Radiat Isot 65(11):1202–1207

    Article  CAS  PubMed  Google Scholar 

  3. Jennewein M, Lewis MA, Zhao D, Tsyganov E, Slavine N, He J, Watkins L, Kodibagkar VD, O’Kelly S, Kulkarni P, Antich PP, Hermanne A (2008) Vascular imaging of solid tumors in rats with a radioactive arsenic-labeled antibody that binds exposed phosphatidylserine. Clin Cancer Res 14(5):1377–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mandal A, Lahiri S (2012) Production and separation of no-carrier-added 73As and 75Se from 7Li irradiated germanium oxide target. Radiochim Acta 100:856–870

    Article  Google Scholar 

  5. Kelley K, Hoffman R, Dietrich F, Mustafa M (2006) Neutron induced cross sections for radiochemistry for isotopes of arsenic. Lawrence Livermore National Laboratory UCRL-TR-218181

  6. Hanson S, Oldham W (2021) Weapons radiochemistry: trinity and beyond. Nucl Technol 207:S295–S308

    Article  Google Scholar 

  7. Wycoff DE, Gott MD, DeGraffenreid AJ, Morrow RP, Sisay N, Embree MF, Ballard B, Fassbender ME, Cutler CS, Ketring AR, Jurisson SS (2014) Chromatographic separation of selenium and arsenic: a potential 72Se/72As generator. J Chromatogr A 1340:109–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chajduk E, Doner K, Polkowska-Motrenko H, Bilewicz A (2012) Novel radiochemical separation of arsenic from selenium for 72Se/72As generator. Appl Radiat Isot 70:819–822

    Article  CAS  PubMed  Google Scholar 

  9. Feng Y, Phipps MD, Phelps TE, Okoya NC, Baumeister JE, Wycoff DE, Dorman EF, Wooten AL, Vlasenko V, Berendzen AF, Wilbur DS, Hoffman TJ, Cutler CS, Ketring AR, Jurisson SS (2019) Evaluation of 72Se/72As generator and production of 72Se for supplying 72As as a potential PET imaging radionuclide. Appl Radiat Isot 143:113–122

    Article  CAS  PubMed  Google Scholar 

  10. Ballard B, Wycoff D, Birnbaum ER, John KD, Lenz JW, Jurisson SS, Cutler CS, Nortier FM, Taylor WA, Fassbender ME (2012) Selenium-72 formation via natBr(p, x) induced by 100 MeV protons: steps towards a novel 72Se/72As generator system. Appl Radiat Isot 70:595–601

    Article  CAS  PubMed  Google Scholar 

  11. Budyak A, Bryukhanova N (2012) Selenium, bismuth, and mercury in black shale-hosted gold deposits of different genetic types. Geochem Int 50(9):791–797

    Article  CAS  Google Scholar 

  12. Liu S, Wang Y, Yu L, Oakey J (2006) Volitilization of mercury, arsenic and selenium during underground coal gasification. Fuel 85(10–11):1550–1558

    Article  CAS  Google Scholar 

  13. Leddicotte G (1961) The radiochemistry of selenium. Subcommittee on Radiochemistry - National Academy of Sciences, Oak Ridge, TN

  14. Marin L, Lhomme J, Carignan J (2001) Determination of selenium concentration in sixty five reference materials for geochemical analysis by GFAAS after separation with thiol cotton. Geostand Geoanal Res 25(2–3):317–324

    Article  CAS  Google Scholar 

  15. Robberecht H, Van Grieken R (1982) Selenium in environmental waters: determination, speciation and concentration levels. Talanta 9(10):823–844

    Article  Google Scholar 

  16. Barache U, Shaikh A, Lokhande T, Anuse M, Kamble G, Gurame V, Gaikwad S (2017) Acid switched efficient, cost effective, selective separation and determination of selenium(IV). J Environ Chem Eng 5(5):4828–4840

    Article  CAS  Google Scholar 

  17. Ellison P, Barnhart T, Chen F, Hong H, Zhang Y, Theuer C, Cai W, Nickles R, DeJesus O (2015) High yield production and radiochemical isolation of isotopically pure arsenic-72 and novel radioarsenic labeling strategies for the development of theranostic radiopharmaceuticals. Bioconjug Chem 27(1):179–188

    Article  PubMed  PubMed Central  Google Scholar 

  18. National Nuclear Data Center (2019) Brookhaven National Laboratory. https://www.nndc.bnl.gov/nudat2/indx_dec.jsp. Accessed 2 June 2023

  19. Horwitz EP, Dietz M, Chiarizia R, Diamond H, Essling A, Graczyk D (1992) Separation and preconcentration of uranium from acidic media by extraction chromatography. Anal Chim Acta 266:25–37

    Article  CAS  Google Scholar 

  20. Horwitz EP, Chiarizia R, Dietz M (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10:313–336

    Article  CAS  Google Scholar 

  21. Kmak KN, Despotopulos JD, Scielzo ND (2023) Extraction of selenium and arsenic with TOA-impregnated XAD-2 resin from HCl. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-023-08818-3

    Article  Google Scholar 

  22. Kmak KN, Despotopulos JD, Scielzo ND (2023) Behavior of selenium and arsenic in HCl and HNO3 on TRU, TEVA, DGA, and Pb extraction chromatography resins. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-023-08904-6

    Article  Google Scholar 

  23. Stewart II, Chow A (1993) The separation of tellurium and selenium by polyurethane foam sorbents. Talanta 40(9):1345–1352

    Article  CAS  PubMed  Google Scholar 

  24. Serjeant EP, Dempsey B (1979) Ionisation constants of organic acids in aqueous solution. IUPAC Chemical Data Series No. 23. Pergamon Press Inc., New York

  25. Petterson J, Olin A (1991) The rate of reduction of selenium(VI) to selenium(IV) in hydrochloric acid. Talanta 38(4):413–417

    Article  Google Scholar 

  26. Sargar BM, Mahamuni SV, Anuse MA (2011) Sequential separation of selenium(IV) from tellurium(IV) by solvent extraction with N-n-octylaniline: analysis of real samples. J Saudi Chem Soc 15(2):177–185

    Article  CAS  Google Scholar 

  27. Aprahamian VH, Demopoulos GP (1995) The solution chemistry and solvent extraction behaviour of Cu, Fe, Ni, Zn, Pb, Sn, Ag, As, Sb, Bi, Se and Te in acid chloride solutions reviewed from the standpoint of PGM refining. Miner Process Extr Metall Rev 14(3–4):143–167

    Article  Google Scholar 

  28. Chowdhury MR, Sanyal SK (1993) Separation by solvent extraction of tellurium(IV) and selenium(IV) with tri-n butyl phosphate: some mechanistic aspects. Hydrometallurgy 32(2):189–200

    Article  CAS  Google Scholar 

  29. Jahn M, Radchenko V, Filosofov DV, Hauser H, Eisenhut M, Rosch F, Jennewein M (2010) Separation and purification of no-carrier-added arsenic from bulk amounts of germanium for use in radiopharmaceutical labelling. Radiochim Acta 98:807–812

    Article  CAS  Google Scholar 

  30. DeGraffenreid AJ, Feng Y, Barnes CL, Ketring AR, Cutler CS, Jurisson SS (2016) Trithiols and their arsenic compounds for potential use in diagnostic and therapeutic radiopharmaceuticals. Nucl Med Biol 43:288–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lothongkum A, Suren S, Chaturabul S, Thamphiphit N, Pancharoen U (2011) Simultaneous removal of arsenic and mercury from natural-gas-co-produced water from the Gulf of Thailand using synergistic extractant via HFSLM. J Membr Sci 369:350–358

    Article  CAS  Google Scholar 

  32. Mastren T, Radchenko V, Engle J, Weidner J, Owens A, Wyant L, Copping R, Brugh M, Nortier M, Birnbaum E, John K, Fassbender M (2018) Chromatographic separation of the theranostic radionuclide 111Ag from a proton irradiated thorium matrix. Anal Chim Acta 998:75–82

    Article  CAS  PubMed  Google Scholar 

  33. Kmak K, Shaughnessy D, Vujic J (2021) Batch and column studies of radium, actinium, thorium and protactinium on CL resin in nitric acid, hydrochloric acid and hydrofluoric acid. J Radioanal Nucl Chem 328:225–233

    Article  CAS  Google Scholar 

  34. Bessen NP, Jackson JA, Jensen MP, Shafer JC (2020) Sulfur donating extractants for the separation of trivalent actinides and lanthanides. Coord Chem Rev 421:213446

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 23-SI-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly N. Kmak.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kmak, K.N., Despotopulos, J.D. & Scielzo, N.D. Uptake behavior of arsenic and selenium with sulfur-based extraction chromatography resins in HCl and HNO3 media. J Radioanal Nucl Chem 333, 441–449 (2024). https://doi.org/10.1007/s10967-023-09195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09195-7

Keywords

Navigation