Skip to main content
Log in

Considerations on premises of recent (< 120 years) sedimentation rate models with unsupported 210Pb: a study case of sediment cores from mud shelf depocenters

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study examines the impact of the constant sedimentation—CS premise on sedimentation rates, mass accumulation rates and age-depth results obtained from unsupported 210Pb models. The investigation is based on vertical profiles of 210Pb, 226Ra, 228Ra, 40K, and 137Cs measured through gamma spectrometry from seven sediment cores collected from the coastal region of southern Brazil. This region is known for harboring mud shelf depocenters. The mean sedimentation rate in the study area was estimated to be between 0.33 and 0.58 cm yr−1. The geographical disposition of the sampling sites allowed the identification of distinct sedimentological features, including a northernmost, middle shelf depocenter, a more coastal depocenter, and a region with sandy sediments deposited by wave-driven dynamics. The findings of this study have revealed that the decision to consider or exclude the CS premise can be made through a thorough examination of the vertical profiles of activities and the application of robust statistical analysis to identify outliers in the vertical profiles of mass accumulation rates. These important considerations play a crucial role in guiding researchers toward selecting the most appropriate approach to investigate sediment cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hanebuth TJ, Lantzsch H, Nizou J (2015) Mud depocenters on continental shelves: appearance, initiation times, and growth dynamics. Geo-Mar Lett 35:487–503

    Article  Google Scholar 

  2. Nizou J, Hanebuth TJJ, Heslop D, Schwenk T, Palamenghi L, Stuut J-B, Henrich R (2010) The Senegal River mud belt: a high-resolution archive of paleoclimatic change and coastal evolution. Mar Geol 278:150–164

    Article  Google Scholar 

  3. Mahiques MM, Figueira RCL, Sousa SHM, Santos RF, Ferreira PAL, Kim BSM, Cazzoli y Goya S, Matos MCSN, Bícego MC (2020) Sedimentation on the southern Brazilian shelf mud depocenters: insights on potential source areas. J South American Earth Sci 100:102577

  4. Mahiques MM, Hanebuth TJ, Martins CC, Montoya-Montes I, Alcántara-Carrió J, Figueira RCL, Bícego MC (2016) Mud depocentres on the continental shelf: a neglected sink for anthropogenic contaminants from the coastal zone. Environ Earth Sci 75:44

    Article  Google Scholar 

  5. Irabien MJ, Cearreta A, Gómez-Arozamena J, Gardoki J, Martín-Consuegra AF (2020) Recent coastal anthropogenic impact recorded in the Basque mud patch (southern Bay of Biscay shelf). Quat Intern 566–567:357–367

    Article  Google Scholar 

  6. Weight RWR, Anderson JB, Fernandez R (2011) Rapid mud accumulation on the Central Texas shelf linked to climate change and sea-level rise. J Sediment Res 81(10):743–764

    Article  Google Scholar 

  7. Zhang W, Didenkulova I, Kurkina O, Cui Y, Haberkern J, Aepfler R, Santos AI, Zhang H, Hanebuth TJJ (2019) Internal solitary waves control offshore extension of mud depocenters on the NW Iberian shelf. Mar Geol 409:15–30

    Article  Google Scholar 

  8. Porz L, Zhang W, Hanebuth TJJ, Schrum C (2021) Physical processes controlling mud depocenter development on continental shelves–geological, oceanographic, and modeling concepts. Mar Geol 432:106422

    Article  Google Scholar 

  9. Jouanneau JM, Weber O, Champilou N, Cirac P, Muxika I, Borja A, Pascual A, Rodríguez-Lázaro J, Donard O (2008) Recent sedimentary study of the shelf of the Basque country. J Mar Sys 72(1–4):397–406

    Article  Google Scholar 

  10. Figueira RCL, Tessler MG, Mahiques MM, Cunha IIL (2006) Distribution of 137Cs, 238Pu and 239+240Pu in sediments of the southeastern Brazilian shelf–SW Atlantic margin. Sci Tot Environ 357:146–159

    Article  CAS  Google Scholar 

  11. Díaz-Asencio M, Corcho-Alvarado JA, Alonso-Hernández C, Quejido-Cabezas A, Ruiz-Fernández AC, Sanchez-Sanchez M, Gómez-Mancebo MB, Froidevaux P, Sanchez-Cabezas JÁ (2011) Reconstruction of metal pollution and recent sedimentation processes in Havana Bay (Cuba): a tool for coastal ecosystem management. J Hazard Mater 196:402–411

    Article  PubMed  Google Scholar 

  12. Ferreira PAL, Ribeiro AP, Nascimento MG, Martins CC, Mahiques MM, Montone RC, Figueira RCL (2013) 137Cs in marine sediments of Admiralty Bay, King George Island, Antarctica. Sci Tot Environ 443:505–510

    Article  CAS  Google Scholar 

  13. Ferreira PAL, Figueira RCL, Cazzoli Y, Goya S, Mahiques MM (2020) Insights on the marine sedimentation of the continental shelf and upper slope off SE Brazil during the 20th century with natural radionuclides. Reg Stu Mar Sci 39:101466.

  14. Wu J, Zheng J, Dai M, Huh C-A, Chen W, Tagami K, Uchida S (2014) Isotopic composition and distribution of plutonium in northern South China Sea sediments revealed continuous release and transport of Pu from the Marshall Islands. Environ Sci Technol 48(6):3136–3144

    Article  CAS  PubMed  Google Scholar 

  15. Cerda M, Evangelista H, Valdés J, Siffedine A, Boucher H, Nogueira J, Nepomuceno A, Ortlieb L (2019) A new 20th century lake sedimentary record from the Atacama Desert/Chile reveals persistent PDO (Pacific Decadal Oscillation) impact. J S Am Earth Sci 95:102302

    Article  Google Scholar 

  16. Ortega C, Vargas G, Rojas M, Rutilant JA, Muñoz P, Lange CB, Pantoja S, Dezileau L, Ortliteb L (2019) Extreme ENSO-driven torrential rainfalls at the southern edge of the Atacama Desert during the Late Holocene and their projection into the 21th century. Global Planet Change 175:226–237

    Article  Google Scholar 

  17. Nagai RH, Ferreira PA, Mulkherjee SVMM, Figueira RC, Sousa SH, Mahiques MM (2014) Hydrodynamic controls on the distribution of surface sediments from the southeast South American continental shelf between 23°S and 38°S. Cont Shelf Res 89:51–60

    Article  Google Scholar 

  18. Mahiques MM, Cazzoli y Goya S, Matos MCSN, Oliveira RAU, Kim BSM, Ferreira PAL, Figueira RCL, Bícego MC (2021) Grain-size end-members and environmentally sensitive grain-size components: a comparative study in the mud shelf depocenters off southern Brazil. Int J Sed Res 36:317–327

  19. Baskaran M, Nix J, Kuyper C, Karunakara N (2014) Problems with the dating of sediment core using excess 210Pb in a freshwater system impacted by large scale watershed changes. J Environ Radioactiv 138:355–363

    Article  CAS  Google Scholar 

  20. Ferreira PAL, Siegle E, Schettini CAF, Mahiques MM, Figueira RCL (2014) Statistical validation of the model of diffusion-convection (MDC) of 137Cs for the assessment of recent sedimentation rates in coastal systems. J Radioanal Nucl Ch 303:2059–2071

    Google Scholar 

  21. Porto P, Walling DE (2015) Use of caesium-137 measurements and long-term records of sediment load to calibrate the sediment delivery component of the SEDD model and explore scale effect: examples from Southern Italy. J Hydrol Eng 20(6):C4014005

    Article  Google Scholar 

  22. Martins LR, Coutinho PN (1981) The Brazilian continental margin. Earth Sci Rev 17(1–2):87–107

    Article  Google Scholar 

  23. Weschenfelder J, Baitelli R, Corrêa ICS, Bortolin EC, Santos CB (2014) Quaternary incised valleys in southern Brazil coastal zone. J S Am Earth Sci 55:83–93

    Article  Google Scholar 

  24. Suguio K, Martin L (1978) Formações quaternárias marinhas do litoral paulista e fluminense. In: Proceedings of the ’78 international symposium on coastal evolution in the quaternary. Sociedade Brasileira de Geologia, São Paulo.

  25. Milliman JD, Meade RH (1983) World-wide delivery of sediment to the oceans. J Geol 91(1):1–21

    Article  Google Scholar 

  26. GEBCO (General Bathymetric Chart of the Oceans) (2020) GEBCO Gridded bathymetry data. Available from: https://www.gebco.net/data_and_products/gridded_bathymetry_data. Access in 28 Aug 2020

  27. Souza RB, Robinson IS (2004) Lagrangian and satellite observations of the Brazilian Coastal Current. Cont Shelf Res 24(2):241–262

    Article  Google Scholar 

  28. Mahiques MM, Tessler MG, Ciotti AM, Silveira ICA, Sousa SHM, Figueira RCL, Tassinari CCG, Furtado VV, Passos RF (2004) Hydrodynamically driven patterns of recent sedimentation in the shelf and upper slope off Southeast Brazil. Cont Shelf Res 24:1685–1697

    Article  Google Scholar 

  29. Marrero A, Tudurí A, Pérez L, Cuña C, Muniz P, Figueira RCL, Mahiques MM, Ferreira PAL, Pittauerová D, Hanebuth T, Rodríguez FG (2014) Cambios históricos en el aporte terrígeno de la cuenca del Río de La Plata sobre la plataforma interna uruguaya. LAT AM J Sediment Basin Anal 21(2):166–179

    Google Scholar 

  30. Kim BSM, Figueira RCL, Angeli JLF, Ferreira PAL, Mahiques MM, Bícego MC (2021) Insights into leaded gasoline registered in mud depocenters derived from multivariate statistical tool: southeastern Brazilian coast. Environ Geochem Hlth 43:47–63

    Article  CAS  Google Scholar 

  31. Santos FR, Neves PA, Kim BSM, Taniguchi S, Lourenço RA, Timoczszuk CT, Sotão BMT, Montone RC, Figueira RCL, Mahiques MM, Bícego MC (2021) Organic contaminants and trace metals in the western South Atlantic upper continental margin: anthropogenic influence on mud depocenters. Mar Pollut Bull 154:111087

    Article  Google Scholar 

  32. Timoszczuk CT, Santos FR, Araújo LD, Taniguci S, Lourenço RA, Mahiques MM, Ferreira PAL, Figueira RCL, Neves PA, Prates D, Bícego MC (2021) Historical deposition of PAHs in mud depocenters from the Southwestern Atlantic continental shelf: the influence of socio-economic development and coal consumption in the last century. Environ Pollut 284:117469

    Article  CAS  PubMed  Google Scholar 

  33. Wanderley CVA, Godoy JM, Godoy MLDP, Rezende CE, Lacerda LD, Moreira I, Carvalho ZL (2014) Evaluating sedimentation rates in the estuary and shelf region of the Paraíba do Sul River, Southeastern Brazil. J Braz Chem Soc 25(1):50–64

    CAS  Google Scholar 

  34. Lazzari L, Wagener ALR, Carreira RS, Godoy JMO, Carrasco G, Lott CT, Mauad CR, Eglinton TI, McIntyre C, Nascimento GS, Boyle EA (2019) Climate variability and sea level change during the Holocene: Insights from an inorganic multi-proxy approach in the SE Brazilian continental shelf. Quatern Int 508:125–141

    Article  Google Scholar 

  35. Ribeiro AP, Figueiredo AMG, Santos JO, Dantas E, Cotrim MEB, Figueira RCL, Silva Filho EV, Wasserman JC (2013) Combined SEM/AVS and attenuation of concentration models for the assessment of bioavailability and mobility of metals in sediments of Sepetiba Bay (SE Brazil). Mar Pol Bull 68(1–2):55–63

    Article  CAS  Google Scholar 

  36. AAPA (American Association of Port Authorities) (2017) Central & South America Container Port Traffic 2015–2017. Available from: https://aapa.files.cms-plus.com/Statistics/CENTRAL%20AND%20SOUTH%20AMERICA%20CONTAINER%20PORT%20TRAFFIC%202015-2017.pdf. Accessed in 18 set 2021.

  37. Combi T, Taniguchi S, Ferreira PAL, Mansur AV, Figueira RCL, Mahiques MM, Montone RC, Martins CC (2013) Sources and temporal patterns of Polychlorinated Biphenyls around a large South American grain-shipping port (Paranaguá Estuarine System, Brazil). Arch Environ Contam Toxicol 64:573–582

    Article  CAS  PubMed  Google Scholar 

  38. Frena M, Bataglion GA, Tonietto AE, Eberlin MN, Alexandre MR, Madureira LAS (2015) Assessment of anthropogenic contamination with sterol markers in surface sediments of a tropical estuary (Itajaí-Açu, Brazil). Sci Tot Environ 544:432–438

    Article  Google Scholar 

  39. Jweda J, Baskaran M (2011) Interconnected riverine-lacustrine systems as sedimentary repositories: case study in southeast Miching using 210Pb and 137Cs-based sediment accumulation and mixing models. J Great Lakes Res 37:432–446

    Article  CAS  Google Scholar 

  40. Liu M, Tanhua T (2021) Water masses in the Atlantic Ocean: characteristics and distributions. Ocean Sci 17:463–486

    Article  CAS  Google Scholar 

  41. Jia G, Jia J (2012) Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology. J Environ Radioactiv 106:98–119

    Article  CAS  Google Scholar 

  42. Cutshall NH, Larsen IL, Olsen CR (1983) Direct analysis of 210Pb in sediment samples: self-absorption corrections. Nucl Instrum Methods 206:309–312

    Article  CAS  Google Scholar 

  43. Bacchi MA, Fernandes EAN, França EJ (2000) A semiempirical approach for the determination of HPGe detector photopeak efficiency aiming at k0-INAA. J Radioanal Nucl Chem 245(1):209–215

    Article  CAS  Google Scholar 

  44. Gilmore GR (2008) Practical gamma-ray spectrometry. Wiley, Warrington, p 385

    Book  Google Scholar 

  45. IAEA (International Atomic Energy Agency) (1989) Measurements of radionuclides in food and the environment. Technical reports series n. 295. Vienna: IAEA. 169 p.

  46. Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta 39:285–304

    Article  CAS  Google Scholar 

  47. Mabit L, Benmansour M, Abril JM, Walling DE, Meusburger K, Iurian AR, Bernard C, Tarján S, Owens PN, Blake WH, Alewell C (2014) Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: a review. Earth-Sci Rev 138:335–351

    Article  CAS  Google Scholar 

  48. Sanchez-Cabeza JA, Ruiz-Fernández AC (2012) 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta 82:183–200

    Article  CAS  Google Scholar 

  49. Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8

    Article  CAS  Google Scholar 

  50. Robbins JA (1978) Geochemical and geophysical applications of radioactive lead isotopes. In: Nriagu JO (1978) Biochemistry of lead. Amsterdam: Elsevier

  51. Krishnaswamy S, Lal D, Martin J, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414

    Article  CAS  Google Scholar 

  52. Carroll J, Lerche I (2003) Sedimentary processes: quantification using radionuclides. In: Baxter MS. Radioactivity in the environment. Oxford: Elsevier. Vol 5. 272

  53. Abril-Hernández JM (2016) A 210Pb-based chronological model for recent sediments with random entries of mass and activities: Model development. J Environ Radioactiv 151(1):64–74

    Article  Google Scholar 

  54. Kathren RL (1984) Radioactivity in the environment: sources, distribution and surveillance. Harwood Academic Publishers, New York, p 397

    Google Scholar 

  55. Ferreira PAL, Figueira RCL, Siegle E, Asp Neto NE, Martins CC, Schettini CAF, Maciel PM, García-Rodriguez F, Mahiques MM (2016) Using a cesium-137 (137Cs) sedimentary fallout record in the South Atlantic Ocean as a supporting tool for defining the Anthropocene. Anthropocene 14:34–45

    Article  Google Scholar 

  56. Ligero RA, Barrera M, Casas-Ruiz M (2005) Levels of 137Cs in muddy sediments on the seabed in the Bay of Cádiz (Spain). Part II. Model of vertical migration of 137Cs. J Environ Radioactiv 80:87–103

    Article  CAS  Google Scholar 

  57. Barescut J, Lariviere D, Stocki T, Pittauerová D, Hettwig B, Fischer HW (2012) Pb-210 sediment chronology: focused on supported lead. Radioprotection 46(6):S277–S282

    Google Scholar 

  58. Ligero RA, Ramos-Lerate I, Barrera M, Casas-Ruiz M (2001) Relationships between sea-bed radionuclide activities and some sedimentological variables. J Environ Radioactiv 57:7–19

    Article  CAS  Google Scholar 

  59. Angelidis MO, Radakovitch O, Veron A, Aloupi M, Heussner S, Price B (2011) Anthropogenic metal contamination and sapropel imprints in deep Mediterranean sediments. Mar Pollut Bull 62(5):1041–1052

    Article  CAS  PubMed  Google Scholar 

  60. Alfonso JA, Pérez K, Palacios D, Handt H, LaBrecque JJ, Mora A, Vásquez Y (2014) Distribution and environmental impact of radionuclides in marine sediments along the Venezuelan coast. J Radioanal Nucl Chem 300:219–224

    Article  CAS  Google Scholar 

  61. Madruga MJ, Silva L, Gomes AR, Libânio A, Reis M (2014) The influence of particle size on radionuclide activity concentrations in Tejo River sediments. J Environ Radioactiv 132:65–72

    Article  CAS  Google Scholar 

  62. Domanov MM, Abrosimov AK, Novichkova EA (2019) Specific features of the 226Ra, 238U, and 232Th distribution in the surface layer of marine sediments under the conditions of active biosedimentation in the Arctic Front Zone. Radiochem 61(5):446–449

    Article  Google Scholar 

  63. Lin W, Feng Y, Yu K, Lan W, Wang Y, Mo Z, Ning Q, Feng L, He X, Huang Y (2020) Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway. Mar Geol 424:106157

    Article  CAS  Google Scholar 

  64. Rodellas V, Garcia-Orellana J, Masqué P, Font-Muñoz JS (2015) The influence of sediment sources on radium-derived estimates of Submarine Groundwater Discharge. Mar Chem 171:107–117

    Article  CAS  Google Scholar 

  65. Megumi K, Oka T, Doi M, Kimura S, Rsujimoto T, Ishiyama T, Katsurayama K (1988) Relationships between the concentrations of natural radionuclides and the mineral composition of the surface soil. Radiat Prot Dosim 24(1–4):69–72

    Article  CAS  Google Scholar 

  66. Cuchiara DC, Fernandes EH, Strauch JC, Winterwerp JC, Calliari LJ (2009) Determination of the wave climate for the southern Brazilian shelf. Cont Shelf Res 29(3):545–555

    Article  Google Scholar 

  67. Lehto J, Hou X (2010) Chemistry and analysis of radionuclides. Wiley-VCH, Weinheim, p 405

    Book  Google Scholar 

  68. Ahmad AY, Al-Ghouti MA, AlSadig I, Abu-Dieyeh M (2019) Vertical distribution and radiological risk assessment of 137Cs and natural radionuclides in soil samples. Sci Sci Rep 9:12196

    Article  PubMed  Google Scholar 

  69. Ergül HA, Belivermiş M, Kiliç Ö, Topcuoĝlu S, Çotuk Y (2013) Natural and artificial radionuclide activity concentrations in surface sediments of Izmit Bay, Turkey. J Environ Radioctiv 126:125–132

    Article  Google Scholar 

  70. Yusoff AH, Mohamed CAR (2016) Mini review Uranium-thorium decay series in the marine environment of the southern South China Sea. J Geol Geophys 5(3):1000246

    Google Scholar 

  71. Bobos I, Madruga MJ, Reis M, Esteves J, Guimarães V (2021) Clay mineralogy insights and assessment of the natural (228Ra, 226Ra, 210Pb, 40K) and anthropogenic (137Cs) radionuclides dispersion in the estuarine and lagoon systems along the Atlantic coast of Portugal. CATENA 206:105532

    Article  CAS  Google Scholar 

  72. Yii M-W, Wan-Mahmood ZU (2012) 226Ra, 228Ra and 228Ra/226Ra in surface marine sediment of Malaysia. J Radioanal Nucl Chem 295:1465–1472

    Article  Google Scholar 

  73. Wan-Mahmood ZU, Yii M-W (2011) Marine radioactivity concentration in the Exclusive Economic Zone of Peninsular Malaysia: 226Ra, 228Ra and 228Ra/226Ra. J Radioanal Nucl Chem 292:183–192

    Article  Google Scholar 

  74. Vieira LH, Achterberg EP, Scholten J, Beck AJ, Liebetrau V, Mills MM, Arrigo KR (2019) Benthic fluxes of trace metals in the Chukchi Sea and their transport into the Arctic Ocean. Mar Chem 208:43–55

    Article  CAS  Google Scholar 

  75. De Winter JCF, Gosling SD, Potter J (2016) Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: a tutorial using simulations and empirical data. Psychol Methods 21(3):273–290

    Article  PubMed  Google Scholar 

  76. Klubi E, Abril JM, Nyarko E, Laissaoui A, Benmansour M (2017) Radioecological assessment and radiometric dating of sediment cores from dynamic sedimentary systems of Pra and Volta estuaries (Ghana) along the Equatorial Atlantic. J Environ Radioactiv 178–179:116–126

    Article  Google Scholar 

  77. Abril JM, San Miguel EG, Ruiz-Canovas C, Casas-Ruiz C, Bolívar JP (2018) From floodplain to aquatic sediments: Radiogeochronological fingerprints in a sediment core from the mining impacted Sancho Reservoir (SW Spain). Sci Tot Environ 631–632:866–878

    Article  Google Scholar 

  78. Ferreira PAL, Figueira RCL, Mahiques MM, Sousa, SHM (2023) Spatial trends in the distribution of natural radioisotopes in the bottom sediments of Santos Basin (Brazil). Ocean Coast Res:71(sup3):e232005

  79. Aquino-López MA, Blaauw M, Christen JA, Sanderson NK (2018) Bayesian analysis of 210Pb dating. J Agr Biol Envir St 23(3):317–333

    Article  Google Scholar 

  80. Sanders CJ, Caldeira PP, Smoak JM, Ketterer ME, Belem A, Mendoza UMN, Cordeiro LGMS, Silva-Filho EV, Patchineelam SR, Albuquerque ALS (2014) Recent organic carbon accumulation (~100 years) along the Cabo Frio, Brazil upwelling region. Cont Shelf Res 75:68–75

    Article  Google Scholar 

  81. Figueira RCL, Tessler MG, Mahiques MM, Fukumoto MM (2007) Is there a technique for the determination of sedimentation rates based on calcium carbonate content? A comparative study on the Southeastern Brazilian shelf. Soils Found 47(4):649–656

    Article  Google Scholar 

  82. Saito RT, Figueira RCL, Tessler MG, Cunha IIL (2001) Geochronology of sediments in the Cananeia-Iguape estuary and in southern continental shelf of São Paulo State. Brazil J Radioanal Nucl Chem 250(1):109–115

    Article  CAS  Google Scholar 

  83. Cagnin RC, Quaresma VS, Chaillou G, Franco T, Bastos AC (2017) Arsenic enrichment in sediment on the eastern continental shelf of Brazil. Sci Tot Environ 607–608:304–316

    Article  Google Scholar 

  84. Gu F, Chiessi CM, Zonneveld KAF, Behling H (2018) Late Quaternary environmental dynamics inferred from marine sediment core GeoB6211-2 off southern Brazil. Palaeogeogr Palaeocl 496:48–61

    Article  Google Scholar 

  85. Pereira Filho J, Spillere LC, Schettini CAS (2006) Itajaí-Açu River estuary (Santa Catarina, Brazil): Preliminary budget for dissolved inorganic nutrients. J Coast Res SI39:702–706

  86. Attisano KK, Santos IR, Andrade CF, Paiva ML, Milani IC, Niencheski LF (2013) Submarine groundwater discharge revealed by radium isotopes (Ra-223 and Ra-224) near a paleochannel on the Southern Brazilian continental shelf. Braz J Oceanography 61(3):195–200

    Article  Google Scholar 

  87. Carreira RS, Albergaria-Barbosa AC, Arguelho ML, Garcia CA (2015) Evidence of sewage input to inner shelf sediments in the NE coast of Brazil obtained by molecular markers distribution. Mar Pol Bull 90(1–2):312–316

    Article  CAS  Google Scholar 

  88. Razik S, Govin A, Chiessi CM, von Dobeneck T (2015) Depositional provinces, dispersal, and origin of terrigenous sediments along the SE South American continental margin. Mar Geol 363:261–272

    Article  CAS  Google Scholar 

  89. Tukey JW (1977) Exploratory data analysis. Reading: Addison-Wesley. 712

  90. Schwertman NC, Owens MA, Adnan R (2004) A simple more general boxplot method for identifying outliers. Comput Stat Data An 47(1):165–174

    Article  Google Scholar 

  91. Schwertman NC, Silva R (2007) Identifying outliers with sequential fences. Comput Stat Data An 51(8):3800–3810

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the São Paulo Research Foundation (FAPESP) for the research Grant 2015/17763-2. MMM acknowledges the National Council of Scientific and Technological Development (CNPq) for the research Grant 300962/2018-5. The authors would also like to express their gratitude to the anonymous reviewers for their unvaluable contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by PALF, BSMK and MMM. The first draft of the manuscript was written by PALF and MMM and all authors commented on all versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paulo Alves de Lima Ferreira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, P.A.d., Figueira, R.C.L., de Mahiques, M.M. et al. Considerations on premises of recent (< 120 years) sedimentation rate models with unsupported 210Pb: a study case of sediment cores from mud shelf depocenters. J Radioanal Nucl Chem 332, 4897–4915 (2023). https://doi.org/10.1007/s10967-023-09192-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09192-w

Keywords

Navigation