Skip to main content
Log in

Assessment of radiological hazard indices caused by 238U, 232Th, 226Ra and 40K radionuclides of heavy minerals on Taiwanese beach sands, stream sediments, and surrounding rocks: implications for radiometric fingerprinting of the environmental impact

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study assessed the radiological hazard indices caused by radionuclides in heavy minerals hosted in Taiwanese beaches, streams, and rocks. Apatite, zircon, monazite, xenotime, rutile, sphene, and epidote are counted as radioactive minerals that respond to radiological hazard indices. These indices are lower than the international permitted values that do not endanger human health. Rocks with uranium migrated out (− Um) are considered radioactive mineral sources with negative migration rates ranging between − 2.18 and − 91.52%, with an average of − 46.85%, and are redistributed into beaches and stream sediments, with positive migration rates ranging between 3.76 and 79.55%, with an average of 41.66%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Report to the general assembly Annex B: exposures from natural radiation sources (NY: UN)

  2. Kapdan E, Karahan A (2011) Radioactivity levels and health risks due to radionuclides in the soil of Yalova, Northwestern Turkey. Int J Environ Res 5:837–846

    CAS  Google Scholar 

  3. Fallah M, Jahangiri S, Janadeleh H, Kameli MA (2019) Distribution and risk assessment of radionuclides in river sediments along the Arvand River. Iran Microchem J 146:1090–1094. https://doi.org/10.1016/j.microc.2019.02.028

    Article  CAS  Google Scholar 

  4. Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, New York, p 589

    Google Scholar 

  5. Abbasi A, Zakaly HMH, Mirekhtiary F (2020) Baseline levels of natural radionuclides concentration in sediments east coastline of North Cyprus. Mar Pollut Bull 16:111793. https://doi.org/10.1016/j.marpolbul.2020.111793

    Article  CAS  Google Scholar 

  6. Abbasi A, Zakaly HMH, Badawi A (2021) The anthropogenic radiotoxic element of 137Cs accumulate to biota in the Mediterranean Sea. Mar Pollut Bull 164:112043. https://doi.org/10.1016/j.marpolbul.2021.112043

    Article  CAS  PubMed  Google Scholar 

  7. Eisebud M (1987) Environmental radioactivity from natural, industrial and military sources, 3rd edn. Academic Press, San Diego

    Book  Google Scholar 

  8. Kurnaz A, Küçükömeroğlu B, Keser R, Okumusoglu NT, Korkmaz F, Karahan G, Çevik U (2007) Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey). Appl Radiat Isot 65:1281–1289

    Article  CAS  PubMed  Google Scholar 

  9. Alfonso JA, Pérez K, Palacios D, Handt H, LaBrecque JJ, Mora A, Vásquez Y (2014) Distribution and environmental impact of radionuclides in marine sediments along the Venezuelan coast. J Radioanal Nucl Chem 300:219–224

    Article  CAS  Google Scholar 

  10. IAEA, International Atomic Energy Agency (1982) Generic models and parameters for assessing the environmental transfer of radio-nuclides from routine releases. Saf. Ser. 57:96–97

    Google Scholar 

  11. Navas A, Soto J, Machin J (2002) 238U, 226Ra, 210Pb, 232Th and 40K activities in soil profiles of the Flysch sector (Central Spanish Pyrenees). Appl Radiat Isot 57:579–589

    Article  CAS  PubMed  Google Scholar 

  12. Beck HL (1972) Physics of environmental gamma radiation fields. In: Proc. of second int symp, on the natural radiation environment. Houston, pp 101–131

  13. Dabayneh KM, Mashal LA, Hasan FI (2008) Radioactivity concentration in soil samples in the southern part of the West Bank, Palestine. Radiat Prot Dosim 131:265–271

    Article  CAS  Google Scholar 

  14. UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation (1993) Sources, effects and risks of ionizing radiation. New York, UN, Report to the General Assembly with annexes

  15. Kurnaz A, Küçükomeroglu B, Keser R, Okumusoglu NT, Korkmaz F, Karahan G, Çevik U (2007) Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey). Appl Radiat Isot 65:1281–1289. https://doi.org/10.1016/j.apradiso.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  16. Buesseler KO, Jayne SR, Fisher NS, Rypina I, Baumann H, Baumann Z, Breier CF, Douglass EM, George J, Macdonald AM, Miyamoto H, Nishikawa J, Pike SM, Yoshida S (2012) Fukushima-derived radionuclides in the ocean and biota off Japan. Proc Natl Acad Sci 109:5984–5988. https://doi.org/10.1073/pnas.1120794109

    Article  PubMed  PubMed Central  Google Scholar 

  17. Janadeleh H, Kameli MA (2017) Metals contamination in sediment and their bioaccumulation in plants and three fish species from freshwater ecosystem. Toxin Rev 36:297–305. https://doi.org/10.1080/15569543.2017.1309551

    Article  CAS  Google Scholar 

  18. Janadeleh H, Kameli MA, Boazar C (2018) Seasonal variations of metal pollution and distribution, sources, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in sediment of the Al Hawizah wetland, Iran. Hum Ecol Risk Assess Int J 24:886–903. https://doi.org/10.1080/10807039.2016.1277416

    Article  CAS  Google Scholar 

  19. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  PubMed  Google Scholar 

  20. Tufeil M, Ahmed N, Mirza SM, Mirza NM, Khan HA (1992) Investigation of gamma-ray activity and radiological hazards of the bricks fabricated around Lahor, Paistan. Pak J Sc Ind Res 34:216–220

    Google Scholar 

  21. Jibiri NN, Bankole QS (2006) Soil radioactivity and radiation absorbed dose rates at roadsides in high-traffic density areas in Ibadan Metropolis, Southwestern Nigeria. Radiat Prot Dosim 118(4):453–458

    Article  CAS  Google Scholar 

  22. Kazoka AR, Mwalilino J, Mtoni PA (2023) Radiological risk assessment of 226Ra, 228Ra and 40K isotopes in tilapia fish and its granitic environment in singida municipality, Tanzania. Earth 4:540–551. https://doi.org/10.3390/earth4030028

    Article  Google Scholar 

  23. Huy NQ, Luyen TV (2006) Study on external exposure doses from terrestrial radioactivity in Southern Vietnam. Radiat Prot Dosim 118(3):331–336

    Article  CAS  Google Scholar 

  24. Saito K, Jacob P (1995) Gamma ray fields in the air due to sources in the ground. Radia Prot Dosim 58:29–45

    CAS  Google Scholar 

  25. Faanhof A (1999) The measurement of natural radioactivity and the impact on humans. Cesk Cas Fys 49:281–296

    Google Scholar 

  26. Asgharizadeh F, Ghannadi M, Samani AB, Meftahi M, Shalibayk M, Sahafipour SA, Gooya ES (2013) Natural radioactivity in surface soil samples from dwelling areas in Tehran city, Iran. Radia Prot Dosim 156(3):376–382. https://doi.org/10.1093/rpd/nct067

    Article  CAS  Google Scholar 

  27. Deymar S, Yazdi M, Rezvanianzadeh MR, Behzadi M (2018) Alkali metasomatism as a process for Ti–REE–Y–U–Th mineralization in the Saghand Anomaly 5, Central Iran: Insights from geochemical, mineralogical, and stable isotope data. Ore Geol Rev 93:308–336

    Article  Google Scholar 

  28. Ravisankar R, Chandramohan J, Chandrasekaran A, Prince Prakash Jebakumar J, Vijayalakshmi I, Vijayagopal P, Venkatraman B (2015) Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Mar Pollut Bull 97:419–430. https://doi.org/10.1016/j.marpolbul.2015.05.058

    Article  CAS  PubMed  Google Scholar 

  29. Yii MW, Zaharudin A, Abdul-Kadir I (2009) Distribution of naturally occurring radionuclides activity concentration in east Malaysian marine sediment. Appl Radiat Isot 67:630–635. https://doi.org/10.1016/j.apradiso.2008.11.019

    Article  CAS  PubMed  Google Scholar 

  30. Dooley JR, Harshman EN, Rosholt JN (1974) Uranium-Lead Ages of the uranium deposits of the Gas Hills and Shirley Basin, Wyoming. Econ Geol 69:527–531

    Article  CAS  Google Scholar 

  31. Deer WA, Howie RA, Zussman J (1992) An introduction to the Rock-Forming Minerals, 2nd edn. Longman, London, p 696

    Google Scholar 

  32. Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim A 69:637–648

    Article  CAS  Google Scholar 

  33. Žáček V, Škoda R, Sulovský P (2009) U-Th-rich zircon, thorite and allanite-(Ce) as main carriers of radioactivity in the highly radioactive ultrapotassic melasyenite porphyry from the Šumava Mts., Moldanubian Zone, Czech Republic. J Geosci 54/4:343–354

    Google Scholar 

  34. Mezger K, Hanson GN, Bohlen SR (1989) High-precision U-Pb ages of metamorphic rutiles: application to the cooling history of high-grade terranes. E Planet Sci Lett. 96:106–118

    Article  CAS  Google Scholar 

  35. Korneliussen A, Ihien P (2002) Laser-ablation ICP-Ms analyses of rutile from the Bamble region, S. Norway. Geologic survey of Norway, NGU report, 112

  36. Papadopoulos A, Christofides G, Koroneos A, Hauzenberger C (2015) U, Th and REE content of heavy minerals from beach sand samples of Sithonia Peninsula (northern Greece). J Minera Geochem 192(2):107–116. https://doi.org/10.1127/njma/2015/0274

    Article  CAS  Google Scholar 

  37. Järvelill J-I, Koch R, Raukas A, Vaasma T (2018) Hazardous radioactivity levels and heavy mineral concentrations in beach sediments of Lake Peipsi, northeastern Estonia. Geologo 24(1):1–12

    Article  Google Scholar 

  38. Tsai T-L, Lin C-C, Chuang C-Y, Wei H-J, Men L-C (2011) The effects of physico-chemical properties on natural radioactivity levels, associated dose rate and evaluation of radiation hazard in the soil of Taiwan using statistical analysis. J Radioanal Nuclear Chem 2883:927–936. https://doi.org/10.1007/s10967-011-1032-z

    Article  CAS  Google Scholar 

  39. Henningsen D (1967) Crushing of sedimentary rock samples and its effect on shape and number of heavy minerals. Sedimentology 8:253–255

    Article  Google Scholar 

  40. Mitwally EMA, Yu B-S (2022) Geochemistry of magnetite in beach sands, stream sediments, and in situ magnetites in surrounding rocks at north Taiwan island. Acta Geochim. https://doi.org/10.1007/s11631-021-00521-y

    Article  Google Scholar 

  41. Mitwally EMA, Yu B-Sh (2023a) Geochemical studies and resource potential of magnetite in Taiwanese beach sands and related source rocks: Implications for geochemical fingerprinting of ore minerals. Ore Geol Rev. Accepted and in publishing and rights

  42. Mitwally EMA, Yu B-Sh (2023b) Geochemical compatibility and discrimination elements of magnetite on the eastern and western beaches of Taiwan. Environ Earth Sci. Accepted and in publishing and rights

  43. Evans RD (1969) The atomic nucleus. MC Graw-Hill, New York

    Google Scholar 

  44. Marolin M (1991) Construction and use of spectrometric calibration pads laboratory y-ray spectrometry, NMA, Egypt. A report to the government of the Arab Republic of Egypt. Project EGY/4/030-03

  45. Hamby DM, Tynybekov AK (2000) Uranium, thorium and potassium in soils along the shore of lake Issyk-Kyol in the Kyrghyz Republic. Environ Monit Assess 73:101–108

    Article  Google Scholar 

  46. Al-Jundi J (2002) Population doses from terrestrial gamma exposure in areas near to old phosphate mine, Russaifa, Jordan. Radiat Meas 35:23–28

    Article  CAS  Google Scholar 

  47. Tzortzis M, Tsertos H, Chirstofides S, Christodoulides G (2003) Gamma ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiat Meas 37:221–229

    Article  CAS  Google Scholar 

  48. IAEA, International Atomic Energy Agency (1988) Geochemical exploration for uranium. Technical Report S. No, 284

  49. ICRP (1991) ICRP Publication 60 radiation protection. Recommendations of the International Commission on Radiological Protection. Am IC RP21, 1–3

  50. Grasety RL, Carson JM, Charbonneau BW, Holman PB (1984) Natural background radiation in Canada. Geol Surv Can Bull 360

  51. Knoll GF (2000) Radiation detection and measurement, 3rd edn. Wiley, New Jersey

    Google Scholar 

  52. IAEA, International Atomic Energy Agency (1979) Gamma-ray surveys in uranium exploration. Technical reports series no. 186, Vienna, 89

  53. Zakaly HM, Uosif MA, Madkour H, Tammam M, Issa S, Elsaman R, El-Taher A (2019) Assessment of natural radionuclides and heavy metal concentrations in marine sediments in view of tourism activities in Hurghada city, northern Red Sea, Egypt. J Phys Sci 30:21–47

    Article  CAS  Google Scholar 

  54. Örgün Y, Altinsoy N, ¸Sahin SY, Güngör Y, Gültekin AH, Karahan G, Karacik Z (2007) Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Çanakkale), Western Anatolia, Turkey. Appl Radiat Isot 65:739–747

    Article  PubMed  Google Scholar 

  55. Ahmed RS, Mohammed RS, Abdaljalil RO (2018) The activity concentrations and radium equivalent activity in soil samples collected from the eastern part of Basrah governorate in southern Iraq. Int J Anal Chem 4:1–11. https://doi.org/10.1155/2018/2541020

    Article  CAS  Google Scholar 

  56. Read D, Lawless TA, Sims RJ, Butter KR (1993) Uranium migration through intact sandstone cores. J Contam Hydro 13(1–4):277–289. https://doi.org/10.1016/0169-7722(93)90066-2

    Article  CAS  Google Scholar 

  57. Tawfic AF, Zakaly HMH, Awad HA, Tantawy HR, Abbasi A, Abed NS, Mostafa M (2021) Natural radioactivity levels and radiological implications in the high natural radiation area of Wadi El Reddah, Egypt. J Radioanal Nucl Chem 327:643–652

    Article  CAS  Google Scholar 

  58. Darnely AG (1982) Hot granite: some general remarks. In: Maurice YT (ed) Uranium in granites. Geological Survey of Canada 81/23: l–10

  59. Vera Tme F, Blanco Rodriguez P, Lozano JC (2002) Distribution of U, Th, and Ra in the plant-soil components of a mineralized uranium area in the south-west of Spain. J Environ Radioact 59:41–60

    Article  Google Scholar 

  60. El Galy MM, El Mezayn AM, Said AF, El Mowafya AA, Mohamed MS (2008) Distribution and environmental impacts of some radionuclides in sedimentary rocks at Wadi Naseib area, southwest Sinai. Egypt J Environ Radioact 99:1075–1082

    Article  PubMed  Google Scholar 

  61. Sroor A, Afifi SY, Abdel-Haleem AS, Salman AB, Abdel-Sammad M (2002) Environmental pollutant isotope measurements and natural radioactivity assessment for North Tushki area, Southwestern Desert, Egypt. Appl Radiat Isot 57:427–436

    Article  CAS  PubMed  Google Scholar 

  62. Zakaly HMH, Uosif MAM, Issa SAM, Tekin HO, Madkour H, Tammam M, El-Taher A, Alharshan GA, Mostafa MYA (2021) An extended assessment of natural radioactivity in the sediments of the mid-region of the Egyptian Red Sea coast. Mar Pollut Bull 171:112658

    Article  CAS  PubMed  Google Scholar 

  63. Mehboob K, Alzahrani YA, Fallatah O, Qutub MMT, Younis H (2020) Radioactivity and radiation hazard indices assessment for phosphate rock samples from Al-Jalamid, Turaif, Umm Wu’al, and As-Sanam, Saudi Arabia. Arab J Sci Eng 46:779–792. https://doi.org/10.1007/s13369-020-04929-1

    Article  CAS  Google Scholar 

  64. Awad HA, Zakaly HMH, Nastavkin AV, El Tohamy AM, El-Taher A (2021) Radioactive mineralizations on granitic rocks and silica veins on shear zone of El-Missikat area, Central Eastern Desert, Egypt. Appl Radiat Isot 168:109493

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Egyptian Nuclear Materials Authority (ENMA) for their assistance with γ-ray spectrometers. We acknowledge constructive comments and suggestions from the Springer Nature Language Editing services to improve the English language of this paper. Special thanks are extended to the anonymous journal reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eslam Mohammed Ali Mitwally.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 179 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitwally, E.M.A., Yu, BS. Assessment of radiological hazard indices caused by 238U, 232Th, 226Ra and 40K radionuclides of heavy minerals on Taiwanese beach sands, stream sediments, and surrounding rocks: implications for radiometric fingerprinting of the environmental impact. J Radioanal Nucl Chem 332, 4847–4875 (2023). https://doi.org/10.1007/s10967-023-09186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09186-8

Keyword

Navigation