Skip to main content
Log in

Assessment of the radiation quality of groundwater with an increased uranium isotope ratio 234U/238U (Pre-Volga region, European Russia)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The article is devoted to assessing the radiation quality formation of groundwater with anomalous excesses of 234U on example the Pre-Volga region (European part of Russia). It was found that exceeding the reference values of groundwater radiological toxicity in a number of cases is associated with anomalously high activity of 234U. Isotopic (2H, 18O) and chemical data indicate that the anomalous 234U/238U ratios are of cryogenic origin related to the effects of past climatic fluctuations on the aquifers. Such groundwater formed from thawed permafrost at extremely low uranium concentrations may have unsatisfactory radiological quality due to anomalous excesses of 234U.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets presented in this study can be obtained upon request to the corresponding author.

References

  1. Darby S, Hill D, Auvinen A, Barros–Dios JM, Baysson H, Bochicchio F (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case−control studies. BMJ 330:223. https://doi.org/10.1136/bmj.38308.477650.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeeb H, Shannoun F (2009) World health organization handbook in indoor radon: a public health perspective. WHO, Brazil (in Portuguese)

    Google Scholar 

  3. Onishchenko A, Zhukovsky M, Veselinovic N, Zunic Z (2010) Radium−226 concentration in spring water sampled in high radon regions. Appl Radiat Isot 68:825–827. https://doi.org/10.1016/j.apradiso.2009.09.050

    Article  CAS  PubMed  Google Scholar 

  4. Canu IG, Laurent O, Pires N, Laurier D, Dublineau I (2011) Health effects of naturally radioactive water ingestion: the need for enhanced studies. Environ Health Perspect 119(12):1676–1680. https://doi.org/10.1289/ehp.1003224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Szabo Z, Paul V, Fischer J, Kraemer T, Jacobsen E (2012) Occurrence and geochemistry of radium in water from principal drinking−water aquifer systems of the United States. Appl Geochem 27:729–752. https://doi.org/10.1016/j.apgeochem.2011.11.002

    Article  CAS  Google Scholar 

  6. Keramati H, Ghorbani R, Fakhri Y, Khaneghah AM (2018) Radon−222 in drinking water resources of Iran: a systematic review, meta−analysis and probabilistic risk assessment (Monte Carlo simulation). Food Chem Toxicol 115:460–469. https://doi.org/10.1016/j.fct.2018.03.042

    Article  CAS  PubMed  Google Scholar 

  7. Chmielewska I, Chałupnik S, Wysocka M, Smoliński A (2020) Radium measurements in bottled natural mineral−, spring− and medicinal waters from Poland. Water Resour Ind 24:100133. https://doi.org/10.1016/j.wri.2020.100133

    Article  Google Scholar 

  8. Lee K, Ko K (2021) Measurement of radium and radon in water using a combination technique of radon−emanation and pair−measurements methods. Appl Radiat Isot 178:109950. https://doi.org/10.1016/j.apradiso.2021.109950

    Article  CAS  PubMed  Google Scholar 

  9. Sherif MI, Sturchio NC (2021) Elevated radium levels in Nubian Aquifer groundwater of Northeastern Africa. Sci Rep 11:78. https://doi.org/10.1038/s41598−020−80160−0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Amaral R, Júnior J, Fernández Z, Melo N (2022) Risk survey for the population of Recife and neighboring cities due to the occurrence of radium in groundwater. J Environ Radioact 247:106868. https://doi.org/10.1016/j.jenvrad.2022.106868

    Article  CAS  PubMed  Google Scholar 

  11. Su Z, Jia X, Fan Y, Zhao F, Zhou Q, Taylor P, Qiao Y (2022) Quantitative evaluation of radon, tobacco use and lung cancer association in an occupational cohort with 27 follow−up years. Ecotoxicol Environ Saf 232:113233. https://doi.org/10.1016/j.ecoenv.2022.113233

    Article  CAS  PubMed  Google Scholar 

  12. Lei B, Zhao L, Girault F, Cai Z, Luo C, Thapa S, She J, Perrier F (2023) Overview and large−scale representative estimate of radon−222 flux data in China. Environ Advances 11:100312. https://doi.org/10.1016/j.envadv.2022.100312

    Article  CAS  Google Scholar 

  13. WHO (World Health Organization) (2017) Guidelines for drinking−water quality. World Health Organization, Geneva

    Google Scholar 

  14. Bonotto D, Wijesiri B, Goonetilleke A (2019) Nitrate−dependent Uranium mobilisation in groundwater. Sci Total Environ 693:133655. https://doi.org/10.1016/j.scitotenv.2019.133655

    Article  CAS  PubMed  Google Scholar 

  15. NRB–99/2009 (2009) Radiation safety standards. Ministry of Health of Russia, Moscow

    Google Scholar 

  16. Ho PL, Hung LD, Minh VT (2020) Simultaneous determination of gross alpha/beta activities in groundwater for ingestion effective dose and its associated public health risk prevention. Sci Rep 10:4299. https://doi.org/10.1038/s41598−020−61203−y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smedley PL, Kinniburgh DG (2023) Uranium in natural waters and the environment: distribution, speciation and impact. Appl Geochem 148:105534. https://doi.org/10.1016/j.apgeochem.2022.105534

    Article  CAS  Google Scholar 

  18. USEPA (United States Environmental Protection Agency) (1980) Prescribed procedures for measurement of radioactivity in drinking water. Gross Alpha and Gross Beta Radioactivity in Drinking Water (EPA/600/4−80−032). Washington DC

  19. USEPA (United States Environmental Protection Agency) (1986) SW−846 test method 9310: gross alpha and gross beta. Washington DC

  20. UKEA (United Kingdom Environment Agency) (1985) Methods for the examination of waters and associated materials. In: Measurement of alpha and beta activity of water and sludge samples. London

  21. AS 3550.5 (1990) Waters–determination of gross alpha and gross beta activities. Australian Standard, Sydney

    Google Scholar 

  22. APHA/AWWA/WEF (American Public Health Association, American Water Works Association, Water Environment Federation) (1998) Standards methods for the examination of water and wastewater, 19th ed. Washington DC

  23. GOST 51730−2001 (2001) Drinking water. Method for determination of summary specific radio−nuclei alpha−activity. Moscow (in Russian)

  24. VIMS (2009) Total activity of alpha−and beta−emitting radionuclides in natural waters (fresh and mineralized). Sample preparation and measurement. Guidelines. Moscow (in Russian)

  25. USEPA (United States Environmental Protection Agency) (2009) Drinking water regulations and contaminants–national primary drinking water regulations (EPA 816−F−09−000). Washington DC

  26. Guidelines 2.6.1.2719−10 (2010) Radiation control and hygienic assessment of sources of drinking water supply and drinking water in terms of radiation safety. Moscow (in Russian)

  27. ISO 9697−2016 (2016) Water quality. Gross beta activity in drinking water. Thick source method. Minsk (in Russian)

  28. ISO 9696−2017 (2017). Water quality. Gross alpha activity. Test method using thick source.

  29. Banning A, Benfer M (2017) Drinking water uranium and potential health effects in the German Federal state of Bavaria. Int J Environ Res Public Health 14(8):927. https://doi.org/10.3390/ijerph14080927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sarvajayakesavalu S, Lakshminarayanan D, George J, Magesh SB, Anilkumar KM, Brammanandhan GM, Chandrasekara A, Ravikumar M (2018) Geographic information system mapping of gross alpha/beta activity concentrations in ground water samples from Karnataka, India: a preliminary study. Groundw Sustain Dev 6:164–168. https://doi.org/10.1016/j.gsd.2017.12.003

    Article  Google Scholar 

  31. Sahoo SK, Jha VN, Patra AC, Jha SK, Kulkarni MS (2020) Scientific background and methodology adopted on derivation of regulatory limit for uranium in drinking water–a global perspective. Environ Adv 2:100020. https://doi.org/10.1016/j.envadv.2020.100020

    Article  Google Scholar 

  32. Balaram V, Rani A, Rathore DPS (2022) Uranium in groundwater in parts of India and world: a comprehensive review of sources, impact to the environment and human health, analytical techniques, and mitigation technologies. Geosyst Geoenviron 1(2):100043. https://doi.org/10.1016/j.geogeo.2022.100043

    Article  Google Scholar 

  33. Zamora ML, Tracy BL, Zielinski JM, Meyerhof DP, Moss MA (1998) Chronic ingestion of uranium in drinking water: a study of kidney bioeffects in humans. Toxicol Sci 43:68–77. https://doi.org/10.1093/toxsci/43.1.68

    Article  CAS  PubMed  Google Scholar 

  34. Kurttio P, Auvinen A, Salonen L, Saha H, Pekkanen J, Mäkeläinen I (2002) Renal effects of uranium in drinking water. Environ Health Perspect 110(4):337–342. https://doi.org/10.1289/ehp.02110337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma M, Wang R, Xu L, Xu M, Liu S (2020) Emerging health risks and underlying toxicological mechanisms of uranium contamination: lessons from the past two decades. Environ Int 145:106107. https://doi.org/10.1016/j.envint.2020.106107

    Article  CAS  PubMed  Google Scholar 

  36. Kumar A, Arora T, Singh P, Singh K, Singh D, Pathak P, Ramola R (2021) Quantification of radiological dose and chemical toxicity due to radon and uranium in drinking water in Bageshwar region of Indian Himalaya. Groundw Sustain Dev 12:100491. https://doi.org/10.1016/j.gsd.2020.100491

    Article  Google Scholar 

  37. Ramesh R, Subramanian M, Lakshmanan E, Subramaniyan A, Gowrisankar G (2021) Human health risk assessment using Monte Carlo simulations for groundwater with uranium in southern India. Ecotoxicol Environ Saf 226:112781. https://doi.org/10.1016/j.ecoenv.2021.112781

    Article  CAS  PubMed  Google Scholar 

  38. Sahu M, Kumar S, Baghel T, Dewangan R (2020) Seasonal and geochemical variation of uranium and major ions in groundwater at Kanker district of Chhattisgarh, central India. Groundw Sustain Dev 10:100330. https://doi.org/10.1016/j.gsd.2020.100330

    Article  Google Scholar 

  39. Nolan J, Weber KA (2015) Natural uranium contamination in major U.S. aquifers linked to nitrate. Environ Sci Technol Lett 2(8):215–220. https://doi.org/10.1021/acs.estlett.5b00174

    Article  CAS  Google Scholar 

  40. Eross A, Csondor K, Izsak B, Vargha M, Horváth Á, Pándics T (2018) Uranium in groundwater–the importance of hydraulic regime and groundwater flow system’s understanding. J Environ Radioact 195:90–96. https://doi.org/10.1016/j.jenvrad.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  41. Makubalo SS, Diamond RE (2020) Hydrochemical evolution of high uranium, fluoride and nitrate groundwaters of Namakwaland. South Africa J Afr Earth Sci 172:104002. https://doi.org/10.1016/j.jafrearsci.2020.104002

    Article  CAS  Google Scholar 

  42. Prakash R, Bhartariya KG, Singh S (2020) Uranium and Its correlation with other geogenic contaminants in ground water of Ganga Yamuna Doab, Fatehpur District, Uttar Pradesh, India. J Geol Soc India 95:359–365. https://doi.org/10.1007/s12594−020−1444−x

    Article  CAS  Google Scholar 

  43. Mathuthu M, Uushona V, Indongo V (2021) Radiological safety of groundwater around a uranium mine in Namibia. Phys Chem Earth 122:102915. https://doi.org/10.1016/j.pce.2020.102915

    Article  Google Scholar 

  44. Bala R, Karanveer D (2022) Occurrence and behaviour of uranium in the groundwater and potential health risk associated in semi−arid region of Punjab. India Groundw Sustain Dev 17:100731. https://doi.org/10.1016/j.gsd.2022.100731

    Article  Google Scholar 

  45. Dwivedi D, Steefel CI, Arora B, Banfield J, Bargar J (2022) From legacy contamination to watershed systems science: a review of scientific insights and technologies developed through DOE−supported research in water and energy security. Environ Res Lett 17(4):043004. https://doi.org/10.1088/1748−9326/ac59a9

    Article  Google Scholar 

  46. Khurelbaatar L, Batdelger A, Khinayat T, Oyuntsetseg B (2022) Pattern recognition method from hydrochemical parameters to predict uranium concentrations in groundwater. Chemometr Intell Lab Syst 222:104509. https://doi.org/10.1016/j.chemolab.2022.104509

    Article  CAS  Google Scholar 

  47. Pushparaj GT, Sampath PV, Maliyekkal SM (2022) A critical review of uranium contamination in groundwater: treatment and sludge disposal. Sci Total Environ 825:15394. https://doi.org/10.1016/j.scitotenv.2022.153947

    Article  CAS  Google Scholar 

  48. Papageorgiou F, McDermott F, Van Acken D (2022) Uranium in groundwaters: insights from the Leinster granite. SE Ireland Appl Geochem 139:105236. https://doi.org/10.1016/j.apgeochem.2022.105236

    Article  CAS  Google Scholar 

  49. Sharma DA, Keesari T, Pant D, Rishi MS, Sangwan P, Thakur N, Sinha UK (2022) Appraising the factors favouring uranium mobilization and associated health risk assessment in groundwaters of north−western India. Ecotoxicol Environ Saf 229:113086. https://doi.org/10.1016/j.ecoenv.2021.113086

    Article  CAS  PubMed  Google Scholar 

  50. Cherdyntsev VV (1969) Uranium−234. Atomizdat, Moscow (in Russian)

    Google Scholar 

  51. Chalov PI (1975) Isotopic fractionation of natural uranium. Frunze (in Russian)

  52. Andrews JN, Ford DJ, Hussain N, Trivedi D, Youngman MJ (1989) Natural radioelement solution by circulating groundwaters in the Stripa granite. Geochim Cosmochim Acta 53:1791–1802

    Article  CAS  Google Scholar 

  53. Grabowski P, Bem H (2012) Uranium isotopes as a tracer of groundwater transport studies. J Radioanal Nucl Chem 292(3):1043–1048. https://doi.org/10.1007/s10967−011−1558−0

    Article  CAS  PubMed  Google Scholar 

  54. Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2007) Handbook of the toxicology of metals. Elsevier, Amsterdam. https://doi.org/10.1016/B978−0−12−369413−3.X5052−6

    Book  Google Scholar 

  55. Keith S, Faroon O, Roney N (2013) Toxicological profile for uranium. Agency for toxic substances and disease registry (US)

  56. Sofield RM, Kantar C (2013) Uranium. Reference module in earth systems and environmental sciences. Elsevier, Amsterdam. https://doi.org/10.1016/B978−0−12−409548−9.00804−6

    Book  Google Scholar 

  57. Silva ML, Bonotto DM (2015) Uranium isotopes in groundwater occurring at Amazonas State, Brazil. Appl Radiat Isot 97:24–33. https://doi.org/10.1016/j.apradiso.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  58. Thang NV, Thu HNP, Hao LC (2022) Uranium isotopes in groundwater in Ho Chi Minh City and related issues: health risks, environmental effects, and mitigation methods. J Contam Hydrol 245:103941. https://doi.org/10.1016/j.jconhyd.2021.103941

    Article  CAS  PubMed  Google Scholar 

  59. Vengosh A, Coyte R, Podgorski J, Johnson T (2022) A critical review on the occurrence and distribution of the uranium−and thorium−decay nuclides and their effect on the quality of groundwater. Sci Total Environ 808:151914. https://doi.org/10.1016/j.scitotenv.2021.151914

    Article  CAS  PubMed  Google Scholar 

  60. Bakhur AE (2009) Scientific and methodological bases of radioecological assessment of geological environment. VIMS, Moscow (in Russian)

  61. Abdul–Hadi A, Alhassanieh O, Ghafar M (2001) Disequilibrium of uranium isotopes in some Syrian groundwater. Appl Radiat Isot 55(1):109–113. https://doi.org/10.1016/S0969−8043(00)00369−9

    Article  PubMed  Google Scholar 

  62. Lee MH, Choi GS, Cho YH, Lee CW, Shin HS (2001) Concentrations and activity ratios of uranium isotopes in the groundwater of the Okchun Belt in Korea. J Environ Radioact 57(2):105–116. https://doi.org/10.1016/S0265−931X(01)00014−5

    Article  CAS  PubMed  Google Scholar 

  63. Chabaux F, Riotte J (2003) U−Th−Ra fractionation during weathering and river transport. Rev Mineral Geochem 52(1):533–576. https://doi.org/10.2113/0520533

    Article  CAS  Google Scholar 

  64. Goldstein SJ, Abdel–Fattah AI, Murrell MT, Dobson PF, Norman DE, Amato RS, Nunn AJ (2010) Uranium−series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Peña Blanca, Mexico. Environ Sci Technol 44(5):1579–1586. https://doi.org/10.1021/es902689e

    Article  CAS  PubMed  Google Scholar 

  65. Wang R, You C (2013) Uranium and strontium isotopic evidence for strong submarine groundwater discharge in an estuary of a mountainous island: a case study in the Gaoping River Estuary, Southwestern Taiwan. Mar Chem 157:106–116. https://doi.org/10.1016/j.marchem.2013.09.004

    Article  CAS  Google Scholar 

  66. Paces JB, Wurster FC (2014) Natural uranium and strontium isotope tracers of water sources and surface water−groundwater interactions in arid wetlands–Pahranagat Valley, Nevada, USA. J Hydrol 517:213–225. https://doi.org/10.1016/j.jhydrol.2014.05.011

    Article  CAS  Google Scholar 

  67. Noli F, Kazakis N, Vargemezis G, Ioannidou A (2016) The uranium isotopes in the characterisation of groundwater in the Thermi−Vasilika region, northern Greece. Isot Environ Health Stud 52:405–413. https://doi.org/10.1080/10256016.2015.1119134

    Article  CAS  Google Scholar 

  68. Guerrero JL, Vallejos Á, Cerón JC, Sánchez–Martos F, Pulido–Bosch A, Bolívar JP (2016) U−isotopes and 226Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas. J Environ Radioact 158–159:9–20. https://doi.org/10.1016/j.jenvrad.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  69. Dhaoui Z, Chkir N, Zouari K, Hadj A, Agoune A (2016) Investigation of uranium geochemistry along groundwater flow path in the Continental Intercalaire aquifer (Southern Tunisia). J Environ Radioact 157:67–76. https://doi.org/10.1016/j.jenvrad.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  70. El Sharkawy AM (2018) 234U/238U activity ratios in groundwaters from two aquifers in Saudi Arabia, and correlation with water chemistry. J Radiat Res Appl Sci 11(4):368–372. https://doi.org/10.1016/j.jrras.2018.07.005

    Article  CAS  Google Scholar 

  71. Ammar F, Deschamps P, Chkir N, Zouari K, Agoune A, Hamelin B (2020) Uranium isotopes as tracers of groundwater evolution in the complexe terminal aquifer of southern Tunisia. Quat Int 547:33–49. https://doi.org/10.1016/j.quaint.2020.01.024

    Article  Google Scholar 

  72. Milena–Perez FP, Benavente J, Expósito–Suarez VM, Vacas–Arquero P, Ferro–García MA (2021) Uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes. J Environ Radioact 227:106503. https://doi.org/10.1016/j.jenvrad.2020.106503

    Article  CAS  PubMed  Google Scholar 

  73. Kazakis N, Busico G, Ntona M, Philippou K (2022) The origin of Uranium in groundwater of the eastern Halkidiki region, northern Greece. Sci Total Environ 812:152445. https://doi.org/10.1016/j.scitotenv.2021.152445

    Article  CAS  PubMed  Google Scholar 

  74. Fallatah O, Khattab MR (2023) Determination of uranium concentrations and 234U/238U isotopic ratios in plants and the groundwater used in their cultivation in an area with high background radiation. Sustainability 15:1590. https://doi.org/10.3390/su15021590

    Article  CAS  Google Scholar 

  75. Kaduka MV, Basalaeva LN, Bekyasheva TA, Ivanov SA, Salazkina NV, Stupina VV, Kaduka AN (2018) The content of uranium isotopes in the underground water sources of the population of Leningrad Region and St. Petersburg. Radiat Hyg 11(3):74–82. https://doi.org/10.21514/1998−426X−2018−11−3−74−82

    Article  Google Scholar 

  76. Tokarev IV, Zubkov AA, Rumynin VG, Pozdnyakov SP, Polyakov VA, Kuznetsov VYu (2009) Assessment of the long−term safety of radioactive waste disposal: 1. Paleoreconstruction of groundwater formation conditions. Water Resour 36(2):206–213

    Article  CAS  Google Scholar 

  77. Ezhova M, Polyakov V, Tkachenko A, Savitsky L, Belkina V (1996) Paleogeologists of North Estonia and their impact on changes in the resources and quality of fresh groundwater in large coastal bodies of water. Geology 19:37–40

    Google Scholar 

  78. Mokrik R, Samalavičius V (2022) Interpretation of the anomalous groundwater chemistry and 234U/238U activity ratio disequilibrium in the northern part of the Baltic region. Lith J Phys 62(1):21–43. https://doi.org/10.3952/physics.v62i1.4645

    Article  Google Scholar 

  79. Ulengov RA (2016) Physical geography of the Republic of Tatarstan. Kazan Federal University, Kazan (in Russian)

    Google Scholar 

  80. Nuriev IS (2010) Features of the formation of the chemical composition of groundwater of the active water exchange zone of the south−west of Tatarstan. Kazan State University, Kazan (in Russian)

    Google Scholar 

  81. MRT (2022) State report on the state of natural resources and environmental protection of the Republic of Tatarstan in 2021. Minprirody RT, Kazan (in Russian)

  82. Gorshkova AT, Urbanova ON, Bortnikova NV, Pavlova OV, Valetdinov AR (2017) Dynamics of change in the character of surface runoff formation of the Western Precambrian region of the Republic of Tatarstan. Evolut Dyn Ecosyst 1–2:55 ((in Russian))

    Google Scholar 

  83. Urquhart C, Gore AJP (1973) The redox characteristics of four peat profiles. Soil Biol Biochem 5:659–672. https://doi.org/10.1016/0038−0717(73)90056−4

    Article  CAS  Google Scholar 

  84. VIMS (2013) Methods for measuring the volumetric activity of uranium isotopes (238U, 234U, 235U) in samples of natural (fresh and mineralized), technological and waste waters by alpha−spectrometric method with radiochemical preparation. All−Russian Mineral Resources Research Institute, VIMS, Moscow (in Russian)

  85. Palmer MR, Edmond JM (1993) Uranium in river water. Geochim Cosmochim Acta 57(20):4947–4955. https://doi.org/10.1016/0016−7037(93)90131−F

    Article  CAS  Google Scholar 

  86. Yudin SS (2008) On some features of uranium behavior in the river net of the Azov Sea Basin. Izvestiya vuzov. North Cauc Region 6(148):115–118 ((in Russian))

    Google Scholar 

  87. Amrane M, Oufni L (2017) Determination for levels of uranium and thorium in water along Oum Er−Rabia river using alpha track detectors. J Radiat Res Appl Sci 10(3):246–251. https://doi.org/10.1016/j.jrras.2017.05.002

    Article  CAS  Google Scholar 

  88. Sharifullin AN, Mozzherin VI, Mozzherin VV, Dvinskikh AP, Denmukhametov RR, Kurbanova SG (2008) Evaluation of the underground feeding of rivers and springs of the Republic of Tatarstan. Nauchnye zapiski Kazanskogo Gosudarstvennogo Universiteta. Series Nat Sci 150(4):67–76 ((in Russian))

    Google Scholar 

  89. Kiselev GP (1999) Even isotopes of uranium in the geosphere. UrB RAS, Yekaterinburg (in Russian)

  90. Rikhvanov LP (2009) Radioactive elements in the environment and the problems of radioecology: a training manual. Tomsk Polytechnic University, Tomsk (in Russian)

    Google Scholar 

  91. Shvartsev SL (1998) Hydrogeochemistry of hypergenesis zone. Nedra, Moscow (in Russian)

    Google Scholar 

  92. Yakovlev EYu, Tokarev IV, Zykov SB, Iglovsky SA, Ivanchenko NL (2021) Isotope signs (234U/238U, 2H, 18O) of groundwater: an investigation of the existence of Paleo−Permafrost in European Russia (Pre−Volga region). Water 13:1838. https://doi.org/10.3390/w13131838

    Article  CAS  Google Scholar 

  93. Langmuir D (1978) Uranium solution–mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42(6):547–569

    Article  CAS  Google Scholar 

  94. Paradis CJ, Hoss KN, Meurer CE, Hatami JL, Dangelmayr MA, Tigar AD, Johnson RH (2022) Elucidating mobilization mechanisms of uranium during recharge of river water to contaminated groundwater. J Contam Hydrol 251:104076. https://doi.org/10.1016/j.jconhyd.2022.104076

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank PhD Ekaterina Konopleva for assistance in sampling of groundwater. The authors are also grateful to the heads of the municipal districts of the Republic of Tatarstan and the Chuvash Republic for assistance in organizing of water sampling.

Funding

This research was funded by the Russian Science Foundation grant No. 20-77-10057 “Diagnostics of permafrost degradation based on isotope tracers (234U/238U, δ18O + δ2H, δ13C + 14C)”.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization EY and IT; methodology: EY, IT, AO and SZ; software: EY; validation: IT; formal analysis: EY, IT, AO; investigation: EY, IT, AO and SZ; writing—original draft preparation: EY and IT; visualization: EY and AO; supervision: EY and IT; project administration: EY. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Evgeny Yakovlev.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, E., Tokarev, I., Orlov, A. et al. Assessment of the radiation quality of groundwater with an increased uranium isotope ratio 234U/238U (Pre-Volga region, European Russia). J Radioanal Nucl Chem 332, 4963–4975 (2023). https://doi.org/10.1007/s10967-023-09174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09174-y

Keywords

Navigation