Skip to main content
Log in

A brief review of the distribution of caesium-137 in natural vegetation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Environmental radioactivity is present everywhere. Sometimes, anthropogenic activities may increase the background radiation level and persist for a long time in the environment. Radioactive contamination of food resources with long-lived 137Cs possess a continuous radiological hazard to human health. This review discusses worldwide reports on the distribution and activity of radio-caesium in edible biota, foodstuff and vegetation. Cumulatively, the congregated data of 137Cs activity shows an uneven spatial distribution pattern among various geographical locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kessler G, Kessler G (2012) Radioactive releases from nuclear power plants and fuel cycle facilities during normal operation. Sustainable and safe nuclear fission energy: technology and safety of fast and thermal nuclear reactors, pp 283–311

  2. Naskar N, Banerjee K (2020) Development of sustainable extraction method for long-lived radioisotopes, 133Ba and 134Cs using a potential bio-sorbent. J Radioanal Nucl Chem 325:587–593

    Article  CAS  Google Scholar 

  3. Mitra S, Naskar N (2022) Separation of 133Ba and 137Cs from Mixtures of 133Ba and 137Cs by Environmentally Benign PEG-Based Aqueous Biphasic System. J Sol Chem 51:1209–1218

    Article  CAS  Google Scholar 

  4. National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Nuclear and Radiation Studies Board; Committee on Radioactive Sources: Applications and Alternative Technologies. Radioactive Sources: Applications and Alternative Technologies. Washington (DC): National Academies Press (US); 2021. 6, Radioactive Sources and Alternative Technologies in Industrial Applications

  5. Schulz RK (1965) Soil chemistry of radionuclides. Health Phys 11:1317–1324

    Article  CAS  PubMed  Google Scholar 

  6. Brouwer E, Baeyens B, Maes A, Cremers A (1983) Caesium and rubidium ion equilibria in illite clay. J Phys Chem 87:1213–1219

    Article  CAS  Google Scholar 

  7. Livens FR, Loveland PJ (1988) The influence of soil properties on the environmental mobility of cesium in Cumbria. Soil Use Manage 4:69–75

    Article  CAS  Google Scholar 

  8. Sheppard MI, Thibault DH (1990) Default soil/liquid partition coefficients, Kd, for four major soil types: a compendium. Health Phys 59:471–482

    CAS  PubMed  Google Scholar 

  9. Roca MC, Vallejo VR (1995) Effect of soil potassium and calcium on cesium and strontium uptake by plant roots. J Environ Radioact 28:141–159

    Article  CAS  Google Scholar 

  10. Hird AB, Rimmer DL, Livens FR (1995) Total Caesium fixing potentials of acid organic soils. J Environ Radioact 26:103–118

    Article  CAS  Google Scholar 

  11. Shand CA, Cheshire MV, Smith S, Vidal M, Rauret G (1994) Distribution of radiocesium in organic Soils. J Environ Radioact 23:285–302

    Article  CAS  Google Scholar 

  12. Hird AB, Rimmer DL, Livens FR (1996) Factors affecting the sorption and fixation of cesium in acid organic soils. European J Soil Sci 47:97–104

    Article  CAS  Google Scholar 

  13. Cheshire MV, Shand C, Smith S, Wood KA, Coutts G (1998) Factors controlling the movement of radiocesium in organic soils. In: K. Nicholson (ed), Energy and the environment: Geochemistry of fossil, nuclear and renewable resources. Aberdeenshire: MacGregor Sci 141–152

  14. Rigol A, Vidal M, Rauret G, Shand CA, Cheshire MV (1998) Competition of organic and mineral phases in radiocesium partitioning in organic soils of Scotland and the area near Chernobyl. Environ Sci Technol 32:663–669

    Article  CAS  Google Scholar 

  15. Thiry Y, Myttenaere C (1993) Behaviour of Radiocesium in forest multilayered soils. J Environ Radioact 18:247–257

    Article  CAS  Google Scholar 

  16. Sanchez AL, Parekh NR, Dodd BA, Ineson P (2000) Microbial component of radiocesium retention in highly organic soils. Soil Biol Biochem 32:2091–2094

    Article  CAS  Google Scholar 

  17. Sanchez AL, Schell WR, Thomas ED (1988) Interactions of 57Co, 85Sr and 137Cs with peat under acidic precipitation conditions. Health Phys 54:317–322

    Article  CAS  PubMed  Google Scholar 

  18. Gastberger M, Steinhausler F, Gerzabek MH, Lettner H, Humber A (2000) Soil to plant transfer of fallout cesium and strontium in Australian and Alpine pastures. J Environ Radioact 49:217–233

    Article  CAS  Google Scholar 

  19. van Bergeijk KE, Noordijk H, Lembrechts J, Frissel MJ (1992) Influence of pH, soil type and soil organic matter content on soil to plant transfer of radiocesium and strontium as analyzed by a nonparametric method. J Environ Radioact 15:265–276

    Article  Google Scholar 

  20. Naskar N, Lahiri S, Chaudhuri P (2019) Quantitative estimation of total potassium and 40K in surface soil samples of Indian Sundarbans. J Radioanal Nucl Chem 322:11–17

    Article  CAS  Google Scholar 

  21. von Fircks Y, Rosén K, Sennerby-Forsse L (2002) Uptake and distribution of 137Cs and 90Sr in Salix viminalis plants. J Environ Radioact 63:1–14

    Article  Google Scholar 

  22. Rosen K (1996) Field studies on the behaviour of radiocesium in agricultural environments after the Chernobyl accident. Ph. D thesis, University Agricultural Science, Rapport SLU-REK-78. ISSN 0280-7963

  23. Smolders E, Kiebooms L, Buysee J, Merckx R (1996) 137Cs uptake in spring wheat (Triticum aestivum L. cv Tonic) at varying K supply. The effect in solution culture. Plant Soil 181:205–209

    Article  CAS  Google Scholar 

  24. Ciuffo LEC, Beilli M, Pasquale A, Menegon S, Velasco HR (2002) 137Cs and 40K soil-to-plant relationship in a seminatural grassland of the Giulia Alps, Italy. Sci Total Environ 295:69–80

    Article  CAS  PubMed  Google Scholar 

  25. Robinson WL, Stone EL (1992) The effect of potassium on the uptake of 137Cs if food crops grown on coral soils: coconut at Bikini Atoll. Health Phys 62:496–511

    Article  Google Scholar 

  26. Dikiy NP, Lyashko YuV, Katalevska DS, Parhomenko YuG, Botova MA (2014) Anthropogenic radionuclide and trace elements of soil and celandine in Kharkov city. Prob At Sci Technol 63:54–58

    CAS  Google Scholar 

  27. Ehlken S, Kirchner G (1996) Seasonal variations in soil-to-grass transfer of fallout strontium and cesium and of potassium in north German soils. J Environ Radioact 33:147–181

    Article  CAS  Google Scholar 

  28. Rafferty B, Dawson DE, Colgan PA (1994) Seasonal variations in the transfer of 137Cs and 40K to pasture grass and its ingestion by grazing animals. Sci Total Environ 145:125–134

    Article  CAS  PubMed  Google Scholar 

  29. Rafferty B, Dawson DE, Colgan PA (1994) Assessment of the role of soil adhesion in the transfer of l37Cs and 40K to pasture grass. Sci Total Environ 145:135–141

    Article  CAS  PubMed  Google Scholar 

  30. Tsikritzis LI (2005) Chemometrics of the distribution and origin of 226Ra, 228Ra, 40K and 137Cs in plants near the West Macedonia Lignite Center (Greece). J Radioanal Nucl Chem 264:651–656

    Article  CAS  Google Scholar 

  31. Parmaksız A, Ağuş Y (2014) Activity concentrations of 226Ra, 232Th, 40K and 137Cs radionuclides in Turkish medicinal herbs, their ingestion doses and cancer risks. Radiat Eff Defects Solids 169:980–988

    Article  Google Scholar 

  32. Rao DD, Baburajan A, Sudheendran V, Verma PC, Hegde AG (2010) Evaluation and assessment of 25 years of environmental radioactivity monitoring data at Tarapur (India) nuclear site. J Environ Radioact 101:630–642

    Article  CAS  PubMed  Google Scholar 

  33. Dikiy NP, Dovbnya AN, Lyashko YV, Medvedev DV, Medvedeva EP et al (2014) Radionuclide biosorption by the aquatic plants of Pistia stratiotes. Prob At Sci Technol 63:50–53

    CAS  Google Scholar 

  34. Pekşen A, Kurnaz A, Turfan N, Kibar B (2021) Determination of radioactivity levels in different mushroom species from Turkey. Yuzuncu Yıl University J Agri Sci 31:30–41

    Google Scholar 

  35. Turfan N, Kurnaz A, Sariyildiz T (2021) Effect of air pollution on element profile and radioactive compounds in six tree species. Ağaç ve Orman 2:82–92

    Google Scholar 

  36. Jameel AN (2023) Transfer factor of radionuclides from Soil to leafy vegetables in Iraq using gamma ray spectroscopy. Iraqi J Sci 64:643–652

    Article  Google Scholar 

  37. Dohi T, Ohmura Y, Kashiwadani H, Fujiwara K, Sakamoto Y, Iijima K (2015) Radiocaesium activity concentrations in parmelioid lichens within a 60 km radius of the Fukushima Dai-ichi Nuclear Power Plant. J Environ Radioact 146:125–133

    Article  CAS  PubMed  Google Scholar 

  38. Fesenko S, Shinano T, Onda Y, Dercon G (2020) Dynamics of radionuclide activity concentrations in weed leaves, crops and of air dose rate after the Fukushima Daiichi nuclear power plant accident. J Environ Radioact 222:106347

    Article  CAS  PubMed  Google Scholar 

  39. Naskar N, Lahiri S, Chaudhuri P, Srivastava A (2017) Measurement of naturally occurring radioactive material, 238U and 232Th: part 2—optimization of counting time. J Radioanal Nucl Chem 312:161–171

    Article  CAS  Google Scholar 

  40. Naskar N, Lahiri S, Jandu S (2020) Optimization of counting time for measurement of ultra-low-level 238U and 232Th by 80% relative efficiency HPGe detector. J Radiat Nucl Appl 5:201–204

    Article  Google Scholar 

  41. Kessaratikoon P, Boonkong N, Boonkrongcheep R, Changkit N (2021) Assessment of background radioactivity and related radioactive hazard indices in glutinous rice (Oryza sativa var. glutinosa). ASEAN J Sci Technol Rep 24:36–46

    Article  Google Scholar 

  42. Kessaratikoon P, Ninsalai K, Boonkrongcheep R, Changkit N (2022) Measurement and analysis of specific activities of natural and anthropogenic radionuclides in fresh Turmeric (Curcuma longa L.) from Lan Khoi sub-district, Pa Phayom district. Phatthalung Curr Appl Sci Technol 22:1–11

    Google Scholar 

  43. Kırıs E (2022) Radioactivity levels and radiation health hazards in medicinal plants used in Rize Province, Turkey. International J Environ Anal Chem 102:2865–2878

    Article  Google Scholar 

  44. Jevremovic M, Lazarevic N, Pavlovic S, Orlic M (2011) Radionuclide concentrations in samples of medicinal herbs and effective dose from ingestion of 137Cs and natural radionuclides in herbal tea products from Serbian market. Isot Environ Health Studies 47:87–92

    Article  CAS  Google Scholar 

  45. Poursharif Z, Ebrahiminia A, Asadinezhad M, Nickfarjam A, Haeri A, Khoshgard K (2015) Determination of radionuclide concentrations in tea samples cultivated in Guilan Province. Iran Iranian J Med Phys 12:271–277

    Google Scholar 

  46. Duong VH, Nguyen Thanh D, Bui LV, Kim TT, Duong TD et al (2021) Characteristics of radionuclides in soil and tea plant (Camellia sinensis) in Hoa Binh. Vietnam J Radioanal Nucl Chem 329:805–814

    Article  CAS  Google Scholar 

  47. de Castro LP, Maihara VA, Silva PSC, Figueira RCL (2012) Artificial and natural radioactivity in edible mushrooms from Sao Paulo, Brazil. J Environ Radioact 113:150–154

    Article  PubMed  Google Scholar 

  48. Topcuoglu S, Kut D, Esen N, Gungor N, Olmez E, Kirbasoglu C (2001) 137Cs in biota and sediment samples from Turkish coast of the Black Sea, 1997–1998. J Radioanal Nucl Chem 250:381–384

    Article  CAS  Google Scholar 

  49. Kandić I, Kandić A, Čeliković I, Gavrilović M, Janaćković P (2020) Activity concentrations of 137Cs, 40K, and 210Pb radionuclides in selected medicinal herbs from central Serbia and their effective dose due to ingestion. Sci Total Environ 701:134554

    Article  PubMed  Google Scholar 

  50. Ogura SI, Suzuki T, Saito M (2014) Distribution of radioactive cesium in soil and its uptake by herbaceous plants in temperate pastures with different management after the Fukushima Dai-Ichi nuclear power station accident. Soil Sci Plant Nutrit 60:790–800

    Article  CAS  Google Scholar 

  51. Ramadan KA, Seddeek MK, Nijim A, Sharshar T, Badran HM (2011) Radioactivity of sand, groundwater and wild plants in northeast Sinai. Egypt Isot Environ Health Stud 47:456–469

    Article  CAS  Google Scholar 

  52. Pourimani R, Noori M, Madadi M (2015) Radioactivity concentrations in eight medicinal and edible plant species from Shazand. Iran International J Ecosyst 5:22–29

    Google Scholar 

  53. Mitrović BM, Grdović SN, Vitorović GS, Vitorović DP, Pantelić GK, Grubić GA (2014) 137Cs and 40K in some traditional herbal teas collected in the mountain regions of Serbia. Isot Environ Health Stud 50:538–545

    Article  Google Scholar 

  54. Pourimani R, Shahroodi SMM (2018) Radiological assessment of the artificial and natural radionuclide concentrations of wheat and barley samples in Karbala, Iraq. Iranian J Med Phys 15:126–131

    Google Scholar 

  55. Karunakara N, Rao C, Ujwal P, Yashodhara I, Kumara S, Ravi PM (2013) Soil to rice transfer factors for 226Ra, 228Ra, 210Pb, 40K and 137Cs: a study on rice grown in India. J Environ Radioact 118:80–92

    Article  CAS  PubMed  Google Scholar 

  56. Pourimani R, Anoosheh F (2015) A study on transfer factors of environmental radionuclides: radionuclide transfer from soil to different varieties of rice in Gorgan, Iran. Iranian J Med Phys 12:189–199

    Google Scholar 

  57. Rakić M, Karaman M, Forkapić S, Hansman J, Kebert M et al (2014) Radionuclides in some edible and medicinal macrofungal species from Tara Mountain, Serbia. Environ Sci Pollut Res 21:11283–11292

    Article  Google Scholar 

  58. Türkekul İ, Yeşilkanat CM, Ciriş A, Kölemen U, Çevik U (2018) Interpolated mapping and investigation of environmental radioactivity levels in soils and mushrooms in the Middle Black Sea Region of Turkey. Isot Environ Health Studies 54:262–273

    Article  Google Scholar 

  59. Dowdall M, Gwynn JP, Moran C, Odea J, Davids C, Lind B (2005) Uptake of radionuclides by vegetation at a High Arctic location. Environ Pollut 133:327–332

    Article  CAS  PubMed  Google Scholar 

  60. Mitrović B, Vitorović G, Vitorović D, Pantelić G, Adamović I (2009) Natural and anthropogenic radioactivity in the environment of mountain region of Serbia. J Environ Monit 11:383–388

    Article  PubMed  Google Scholar 

  61. Grdović S, Vitorović G, Mitrović B, Andrić V, Petrujkić B, Obradović M (2010) Natural and anthropogenic radioactivity of feedstuffs, mosses and soil in the Belgrade environment, Serbia. Archives of Biol Sci 62:301–307

    Article  Google Scholar 

  62. Harb S, El-Kamel AH, Abd El-Mageed AI, Abbady A, Rashed W (2014) Radioactivity levels and soil-to-plant transfer factor of natural radionuclides from Protectorate area in Aswan. Egypt World J Nucl Sci Technol 4:7–15

    Article  Google Scholar 

  63. Saba D, El Samad O, Baydoun R, Khozam RB, Manouchehri N et al (2020) Radiological impact on uncultivated soil and Dittrichia viscosa plants around a Lebanese coastal fertilizer industry. Radiat Prot Environ 43:61–69

    Article  Google Scholar 

  64. Turfan N, Genç E (2022) Radiometric Measurements in of Japanese barberry (Berberis thunbergii DC.), Boxwood (Buxus sempervirens L.) and Gold tassel (Euonymus japonica Thunb.) under cadmium and zinc stress. Kastamonu University J Engg Sci 8:98–106

    Google Scholar 

  65. Tazoe H, Hosoda M, Sorimachi A, Nakata A, Yoshida MA, Tokonami S, Yamada M (2012) Radioactive pollution from Fukushima Daiichi nuclear power plant in the terrestrial environment. Radiat Prot Dosimetry 152:198–203

    Article  CAS  PubMed  Google Scholar 

  66. Endo S, Kajimoto T, Shizuma K (2013) Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients. J Environ Radioact 116:59–64

    Article  CAS  PubMed  Google Scholar 

  67. Sasaki Y, Funaki H, Iri S, Dohi T, Hagiwara H (2016) Fate of radiocesium in freshwater aquatic plants and algae in the vicinity of the Fukushima Daiichi nuclear power plant. Limnol 17:111–116

    Article  CAS  Google Scholar 

  68. Coppin F, Hurteven P, Loffredo N, Simonucci C, Julien A et al (2016) Radiocaesium partitioning in Japanese cedar forests following the “early” phase of Fukushima fallout redistribution. Sci Rep 6:37618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sasaki Y, Ishii Y, Abe H, Mitachi K, Watanabe T, Niizato T (2017) Translocation of radiocesium released by the Fukushima Daiichi nuclear power plant accident in Japanese chestnut and chestnut weevil larvae. Horticulture J 86:139–144

    Article  CAS  Google Scholar 

  70. Djingova R, Kuleff I (2002) Concentration of caesium-137, cobalt-60 and potassium-40 in some wild and edible plants around the nuclear power plant in Bulgaria. J Environ Radioact 59:61–73

    Article  CAS  PubMed  Google Scholar 

  71. Lu JG, Huang Y, Li F, Wang L, Li S, Hsia Y (2006) The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. J Environ Radioact 90:89–99

    Article  CAS  PubMed  Google Scholar 

  72. Kiliç Ö, Belivermiş M, Topcuoğlu S, Çotuk Y (2009) 232Th, 238U, 40K, 137Cs radioactivity concentrations and 137Cs dose rate in Turkish market tea. Radiat Eff Defects Solids 164:138–143

    Article  Google Scholar 

  73. Changizi V, Jafarpour Z, Naseri M (2010) Measurement of 226Ra, 228Ra, 137Cs and 40K in edible parts of two types of leafy vegetables cultivated in Tehran province-Iran and resultant annual ingestion radiation dose. Iran J Radiat Res 8:103–110

    Google Scholar 

  74. Changizi V, Shafiei E, Zareh MR (2013) Measurement of 226Ra, 232Th, 137Cs and 40K activities of wheat and corn products in Ilam province–Iran and Resultant annual ingestion radiation dose. Iranian J Public Health 42:903–914

    Google Scholar 

  75. Mohebian M, Pourimani R (2020) Specific activity and radiation hazard of radionuclides in wheat and bean produced near Shazand, Iran. Iranian J Med Phys 17:394–400

    Google Scholar 

  76. Yildiz S, Gürgen A, Çevik U, Çelik A, Doğan HH (2020) Metal and radionuclide accumulation of some cultivated mushrooms. Sigma J Engg Nat Sci 11:167–176

    Google Scholar 

  77. Pourimani R, Rahimi S (2016) Radiological assessment of the artificial and natural radionuclide concentrations of some species of wild fungi and nourished mushrooms. Iranian J Med Phys 13:269–275

    Google Scholar 

  78. Wang S, Yang B, Zhou Q, Li Z, Li W et al (2021) Radionuclide content and risk analysis of edible mushrooms in northeast China. Radiat Medicine Prot 2:165–170

    Article  Google Scholar 

  79. Mietelski JW, Gaca P, Olech MA (2000) Radioactive contamination of lichens and mosses collected in South Shetlands and Antarctic Peninsula. J Radioanal Nucl Chem 245:527–537

    Article  CAS  Google Scholar 

  80. Falandysz J, Saniewski M, Fernandes AR, Meloni D, Cocchi L et al (2022) Radiocaesium in Tricholoma spp. from the Northern Hemisphere in 1971–2016. Sci Total Environ 802:149829

    Article  CAS  PubMed  Google Scholar 

  81. Nakanishi TM, Tanoi K (2013) Agricultural implications of the Fukushima nuclear accident (p. 214). Springer Nature

  82. Hirono Y, Nonaka K (2016) Time series changes in radiocaesium distribution in tea plants (Camellia sinensis (L.)) after the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 152:119–126

    Article  CAS  PubMed  Google Scholar 

  83. Kiyono Y, Akama A (2013) Radioactive cesium contamination of edible wild plants after the accident at the Fukushima Daiichi Nuclear Power Plant. Japanese J Forest Environ 55:113–118

    Google Scholar 

  84. Kato M, Okada Y, Hirai S, Minai Y, Saito S, Shibukawa M (2016) Comparative analysis of distributions of radioactive cesium and potassium and stable cesium, potassium, and strontium in brown rice grains contaminated with radioactive materials released by the Fukushima Daiichi Nuclear Power Plant accident. J Radioanal Nucl Chem 310:247–252

    Article  CAS  Google Scholar 

  85. Fuma S, Watanabe Y, Kubota Y, Soeda H, Aono T, Yoshida S (2017) Radiocaesium contamination of bamboo shoots in Fukushima and surrounding regions after the Fukushima nuclear accident. J Radioanal Nucl Chem 311:219–223

    Article  CAS  Google Scholar 

  86. Dohi T, Ohmura Y, Yoshimura K, Sasaki T, Fujiwara K et al (2021) Radiocaesium accumulation capacity of epiphytic lichens and adjacent barks collected at the perimeter boundary site of the Fukushima Dai-ichi nuclear power station. PLoS ONE 16:e0251828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tsuchiya R, Taira Y, Orita M, Fukushima Y, Endo Y et al (2017) Radiocesium contamination and estimated internal exposure doses in edible wild plants in Kawauchi village following the Fukushima nuclear disaster. PLoS ONE 12:e0189398

    Article  PubMed  PubMed Central  Google Scholar 

  88. Garnier-Laplace J, Beaugelin-Seiller K, Gilbin R, Della-Vedova C, Jolliet O, Payet J (2009) A screening level ecological risk assessment and ranking method for liquid radioactive and chemical mixtures released by nuclear facilities under normal operating conditions. Radioprotect 44:903–908

    Article  Google Scholar 

  89. Vasyanovich ME, Ekidin AA, Vasilyev AV, Kryshev AI, Sazykin TG, Kosykh IV, Kapustin IA (2019) Determination of radionuclide composition of the Russian NPPs atmospheric releases and dose assessment to population. J Environ Radioact 208:106006

    Article  PubMed  Google Scholar 

  90. Cao Y, Zhao Z, Wang P, Yu S, Lai Z et al (2021) Long-term variation of 90Sr and 137Cs in environmental and food samples around Qinshan nuclear power plant. China Sci Rep 11:20903

    Article  CAS  PubMed  Google Scholar 

  91. Tuo F, Zhang Q, Zhou Q, Xu C, Zhang J et al (2016) Measurement of 238U, 228Ra, 226Ra, 40K and 137Cs in foodstuffs samples collected from coastal areas of China. Appl Radiat Isot 111:40–44

    Article  CAS  PubMed  Google Scholar 

  92. Zubair M, Ahmed E, Hartanto D (2022) Estimation of public exposure during normal operation of unit-1 Barakah nuclear power plant using GALE and HOTSPOT. South African J Chem Engg 41:235–243

    Article  Google Scholar 

  93. de Cesare M, Tims SG, Fifield LK (2015) Uranium comparison by means of AMS and ICP-MS and Pu and 137Cs results around an Italian Nuclear Power Plant. In EPJ Web of Conferences (Vol. 91, p. 00004). EDP Sciences

  94. Aliyu AS, Ramli AT, Saleh MA (2015) Assessment of potential human health and environmental impacts of a nuclear power plant (NPP) based on atmospheric dispersion modeling. Atmósfera 28:13–26

    Article  Google Scholar 

  95. Pyuskyulyan K, LaMont SP, Atoyan V, Belyaeva O, Movsisyan N, Saghatelyan A (2020) Altitude-dependent distribution of 137Cs in the environment: a case study of Aragats massif, Armenia. Acta Geochim 39:127–138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Prof. Susanta Lahiri, CSIR-Emeritus Scientist, Diamond Harbour Women’s University, for his continuous guidance and valuable suggestions. The first author (Nabanita Naskar) acknowledges DST INSPIRE Faculty Fellowship (IFA21-EAS 99; Sanction no.: DST/INSPIRE/04/2021/003612 dated 28-03-2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabanita Naskar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naskar, N., Ghosh, M., Maity, M. et al. A brief review of the distribution of caesium-137 in natural vegetation. J Radioanal Nucl Chem 332, 4377–4390 (2023). https://doi.org/10.1007/s10967-023-09166-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09166-y

Keywords

Navigation