Skip to main content
Log in

Instrumental neutron activation analysis by utilizing pneumatic carrier facility at Dhruva reactor for estimation of minor and trace elements in antidiabetic ayurvedic formulations

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ayurvedic formulations could be one of the good options for controlling diabetes mellitus. Present study was undertaken to determine minor and trace elemental contents in twelve antidiabetic herbal formulations by Instrumental Neutron Activation Analysis using Pneumatic Carrier Facility (PCF) at Dhruva research reactor. A total of eight major, minor and trace elements including toxic elements like Al and Sm were determined. Elemental concentrations of Ca, K, Mg, Mn and Na in some of the samples are found to be higher than the recommended dietary intake as per Food Safety and Standards Authority of India and World Health Organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  CAS  PubMed  Google Scholar 

  2. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149

    Article  CAS  PubMed  Google Scholar 

  3. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Magliano DJ (2022) IDF Diabetes Atlas: Global, regional, and country-level diabetes prevalence estimates for 2021 and projections for 2045, Diabetes Res. Clin Pract 183:109–119

    Google Scholar 

  4. Nanditha A, Ma RC, Ramachandran A, Snehalatha C, Chan JC, Chia KS, Zimmet PZ (2016) Diabetes in Asia and the Pacific: implications for the global epidemic. Diabetes Care 39:472–485

    Article  CAS  PubMed  Google Scholar 

  5. Ramachandran A, Snehalatha C, Shetty AS, Nanditha A (2012) Trends in prevalence of diabetes in Asian countries. WJD, World J Diabetes 3:110–117

    Article  PubMed  Google Scholar 

  6. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, Hu FB (2009) Diabetes in Asia: epidemiology, risk factors, and pathophysiology. J Am Med Assoc 301:2129–2140

    Article  CAS  Google Scholar 

  7. Geiss LS, Wang J, Cheng YJ, Thompson TJ, Barker L, Li Y, Gregg EW (2014) Prevalence and incidence trends for diagnosed diabetes among adults aged 20–79 years, United States, 1980–2012. J Am Med Assoc 312:1218–1226

    Article  CAS  Google Scholar 

  8. Jha RP, Shri N, Patel P, Dhamnetiya D, Bhattacharyya K, Singh M (2021) Trends in the diabetes incidence and mortality in India from 1990 to 2019: a join point and age-period-cohort analysis. J Diabetes Metab Disord 20:1725–1740

    Article  PubMed  PubMed Central  Google Scholar 

  9. DECODA Study Group (2003) Age-and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts. Diabetes Care 26:1770–1780

    Article  Google Scholar 

  10. Gutch M, Razi SM, Kumar S, Gupta KK (2014) Diabetes mellitus: trends in northern India. Indian J Endocrinol Metab 18:731–734

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rizwan SA, Kumar R, Singh AK, Kusuma YS, Yadav K, Pandav CS (2014) Prevalence of hypertension in Indian tribes: a systematic review and meta-analysis of observational studies. PLoS ONE 9:e95896-95906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Little M, Humphries S, Patel K, Dodd W, Dewey C (2016) Factors associated with glucose tolerance, pre-diabetes, and type 2 diabetes in a rural community of south India: a cross-sectional study. Diabetol Metab Syndr 8:1–11

    Article  Google Scholar 

  13. Anjana RM, Deepa M, Pradeepa R, Mahanta J, Narain K, Das HK, Yajnik CS (2017) Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR–INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol 5:585–596

    Article  PubMed  Google Scholar 

  14. Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, del Cañizo-Gómez FJ (2014) Type 2 diabetes and cardiovascular disease: have all risk factors the same strength? World J Diabetes 5:444–470

    Article  PubMed  PubMed Central  Google Scholar 

  15. Joshi SR, Parikh RM (2007) India; the diabetes capital of the world: Now heading towards hypertension. J Assoc Physicians India 55:323–324

    PubMed  Google Scholar 

  16. Asif M (2014) The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. J Educ Health Promot 3:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  17. Choudhary N, Kalra S, Unnikrishnan AG, Ajish TP (2012) Preventive pharmacotherapy in type 2 diabetes mellitus. Indian J Endocrinol Metab 16:33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TPA (2007) Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem 40:163–173

    Article  Google Scholar 

  19. Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21:559–577

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kumar S, Dobos GJ, Rampp T (2017) The significance of ayurvedic medicinal plants. Evid Based Complement Altern Med 22:494–501

    Article  Google Scholar 

  21. Dev S (1999) Ancient-modern concordance in ayurvedic plants: some examples. Environ Health Perspect 107:783–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Joshi M, Paudel M, Upreti S (2019) Therapeutic influence of jamun (Syzygium cumini): a review. J Pharmacogn Phytochem 8:1056–1059

    CAS  Google Scholar 

  23. Sarangi MK, Soni S (2013) A review on giloy: the magic herb. Inventi Rapid: Planta Activa 2:1–4

    Google Scholar 

  24. Shukia R, Sharma SB, Puri D, Prabhu KM, Murthy PS (2000) Medicinal plants for treatment of diabetes mellitus. Indian J Clin Biochem 15:169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi-Samani M (2016) The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician 8:1832–1842

    Article  PubMed  PubMed Central  Google Scholar 

  26. Konieczynski P, Gappa M, Wesolowski M, Pinto E, Almeida A (2022) Trace Elements in medicinal plants traditionally used in the treatment of diabetes—do they have a role in the claimed therapeutic effect? Foods 11:667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhattacharya PT, Misra SR, Hussain M (2016) Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica 2016:1–12

    Article  Google Scholar 

  28. Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:1–10

    Article  Google Scholar 

  29. Posadzki P, Watson L, Ernst E (2013) Contamination and adulteration of herbal medicinal products (HMPs): an overview of systematic reviews. Eur J Clin Pharmacol 69:295–307

    Article  PubMed  Google Scholar 

  30. Garg A, Kumar A, Nair A, Reddy A (2007) Analysis of some Indian medicinal herbs by INAA. J Radioanal Nucl Chem 271:611–619

    Article  CAS  Google Scholar 

  31. Shamsi S (2016) Comparative elemental analysis of Kushtae Sadaf, a unani formulation. Int J Green Pharm 10:145–148

    Google Scholar 

  32. Yang LI, Li Y, Xj G, Ma X, Yan Q (2013) Comparison of dry dashing, wet ashing and microwave digestion for determination of trace elements in Periostracum serpentis and Periostracum cicadae by ICP-AES. J Chil Chem 58:1876–1879

    Article  CAS  Google Scholar 

  33. Giacomino A, Abollino O, Malandrino M, Karthik M, Murugesan V (2011) Determination and assessment of the contents of essential and potentially toxic elements in ayurvedic medicine formulations by inductively coupled plasma-optical emission spectrometry. Microchem J 99:2–6

    Article  CAS  Google Scholar 

  34. Gomez MR, Cerutti S, Sombra LL, Silva MF, Martínez LD (2007) Determination of heavy metals for the quality control in argentinian herbal medicines by ETAAS and ICP-OES. Food Chem Toxicol 45:1060–1064

    Article  CAS  PubMed  Google Scholar 

  35. Qing-hua Y, Qing W, Xiao-qin M (2012) Determination of major and trace elements in six herbal drugs for relieving heat and toxicity by ICP-AES with microwave digestion. J Saudi Chem Soc 16:287–290

    Article  Google Scholar 

  36. Maghrabi IA (2014) Determination of some mineral and heavy metals in Saudi Arabia popular herbal drugs using modern techniques. Afr J Pharm 8:1000–1005

    CAS  Google Scholar 

  37. Brima EI (2018) Levels of essential elements in different medicinal plants determined by using inductively coupled plasma mass spectrometry. J Anal Chem 2018:1–6

    Google Scholar 

  38. Konieczynski P, Viapiana A, Lysiuk R, Wesolowski M (2018) Chemical composition of selected commercial herbal remedies in relation to geographical origin and inter-species diversity Biol. Trace Elem Res 182:169–177

    Article  CAS  Google Scholar 

  39. Nema NK, Maity N, Sarkar BK, Mukherjee PK (2014) Determination of trace and heavy metals in some commonly used medicinal herbs in ayurveda. Toxicol Ind Health 30:964–968

    Article  PubMed  Google Scholar 

  40. Mandal M, Misra D, Ghosh NN, Mandal V (2017) Physicochemical and elemental studies of Hydrocotyle javanica Thunb for standardization as herbal drug. Asian Pac J Trop Biomed 7:979–986

    Article  Google Scholar 

  41. Bahadur A, Chaudhry Z, Jan G, Danish M, Rehman AU, Ahmad R, Khan A, Khalid S, Ullah I, Shah Z, Ali F, Mushtaq T, Jan FG (2011) Nutritional and elemental analyses of some selected fodder species used in traditional medicine. Afr J Pharm 5:1157–1161

    CAS  Google Scholar 

  42. Al-Omari S (2011) Determination of essential and toxic trace elements in ten herbal medicines using energy dispersive XRF analysis. X-Ray Spectrom 40:31–36

    Article  CAS  Google Scholar 

  43. Jyothsna S, Manjula G, Sammaiah D, Nageswara Rao A (2021) Trace elemental analysis of anti-jaundice medicinal plants of Telangana using EDXRF technique. Mater Today: Proc 43:1526–1533

    Article  CAS  Google Scholar 

  44. Giacomino A, Abollino O, Casanova C, La Gioia C, Magi E, Malandrino M (2015) Determination of the total and bioaccessible contents of essential and potentially toxic elements in ayurvedic formulations purchased from different commercial channels. Microchemical J 120:6–17

    Article  CAS  Google Scholar 

  45. Anim AK, Laar C, Osei J, Odonkor S, Enti-Brown S (2012) Trace metals quality of some herbal medicines sold in Accra, Ghana. Proc Int Acad Ecol Environ Sci 2:111–117

    CAS  Google Scholar 

  46. Naga Raju G, Sarita P, Ramana Murty G, Ravi Kumar M, Seetharami Reddy B, John Charles M, Lakshminarayana S, Seshi Reddy T, Reddy SB, Vijayan V (2006) Estimation of trace elements in some anti-diabetic medicinal plants using PIXE technique. Appl Radiat Isot 64:893–900

    Article  CAS  PubMed  Google Scholar 

  47. Kumari R, Kumar R, Rai A, Rai AK (2021) Evaluation of Na and K in anti-diabetic ayurvedic medicine using LIBS. Lasers Med Sci 37:513–522

    Article  PubMed  Google Scholar 

  48. Narendhirakannan RT, Subramanian S, Kandaswamy M (2005) Mineral content of some medicinal plants used in the treatment of diabetes mellitus. Biol Trace Elem Res 103:109–115

    Article  CAS  PubMed  Google Scholar 

  49. Raju GN, Sarita P, Murty GR, Kumar MR, Reddy BS, Charles MJ, Vijayan V (2006) Estimation of trace elements in some anti-diabetic medicinal plants using PIXE technique. Appl Radiat Isot 64:893–900

    Article  CAS  Google Scholar 

  50. Mohamed H, Haris PI, Brima EI (2019) Estimated dietary intake of essential elements from four selected staple foods in Najran city. Saudi Arabia, BMC Chem 13:1–10

    Google Scholar 

  51. Bhagat PR, Acharya R, Nair AGC, Pandey AK, Rajurkar NS, Reddy AVR (2009) Estimation of iodine in food, food products and salt using ENAA. Food Chem 115:706–710

    Article  CAS  Google Scholar 

  52. Singh V, Garg AN (2006) Availability of essential trace elements in Indian cereals, vegetables and spices using INAA and the contribution of spices to daily dietary intake. Food Chem 94:81–89

    Article  CAS  Google Scholar 

  53. Datta A, Garg AN, Sharma V, Acharya R (2020) Quantification of minor and trace elements in raw and branded turmeric samples using instrumental neutron activation analysis utilizing apsara-U reactor for possible applications to forensic science. J Radioanal Nucl Chem 325:967–975

    Article  CAS  Google Scholar 

  54. Sarmani SB, Abugassa I, Hamzah A, Yahya MD (1999) Elemental analysis of herbal preparations for traditional medicines by neutron activation analysis with the k 0 standardization method. Biol Trace Elem Res 71:365–376

    Article  PubMed  Google Scholar 

  55. Choudhury RP, Acharya R, Nair AGC, Reddy AVR, Garg AN (2008) Availability of essential trace elements in medicinal herbs used for diabetes mellitus and their possible correlations. J Radioanal Nucl Chem 276:85–93

    Article  CAS  Google Scholar 

  56. Choudhury RP, Reddy AVR, Garg AN (2007) Availability of essential elements in nutrient supplements used as antidiabetic herbal formulations. Biol Trace Elem Res 120:148–162

    Article  CAS  PubMed  Google Scholar 

  57. Rajurkar NS, Pardeshi BM (1997) Analysis of some herbal plants from India used in the control of diabetes mellitus by NAA and AAS techniques. Appl Radiat Isot 48:1059–1062

    Article  CAS  PubMed  Google Scholar 

  58. Gamma Pro: Gamma ray analysis software. https://bsi.lv/media/product_files/gammapro.pdf

  59. Bechhoefer J, Real time gamma analysis: Aptec (1984) Phys Today 37: 73–75. https://doi.org/10.1063/1.2916005

  60. Sharma V, Sengupta A, Acharya R, Bagla HK (2023) Chemical characterization of automobile windshield glass samples for major, minor, and trace elemental concentration determination by INAA and its comparison with ED-XRF and DC Arc AES in terms of analytical capabilities and possible applications for glass forensics. RSC Adv 13:5118–5133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5:S23–S30

    Article  CAS  PubMed  Google Scholar 

  62. Silver LD (2011) Sodium and potassium intake: mortality effects and policy implications. Arch Intern Med 171:1191–1192

    Article  PubMed  Google Scholar 

  63. Gowrishankar M, Blair B, Rieder MJ (2020) Dietary intake of sodium by children: why it matters. J Paediatr Child Health 25:47–53

    Article  Google Scholar 

  64. Khan RN, Saba F, Kausar SF, Siddiqui MH (2019) Pattern of electrolyte imbalance in type 2 diabetes patients: experience from a tertiary care hospital. Pak J Med Sci Q 35:797–801

    Google Scholar 

  65. Baqar S, Michalopoulos A, Jerums G, Ekinci EI (2020) Dietary sodium and potassium intake in people with diabetes: are guidelines being met? Nutr Diabetes 10:23–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wankhede S, Jankar J (2021) Determining the role of minerals and trace elements in diabetes and insulin resistance. J Int Pharm Res 33:518–524

    Article  Google Scholar 

  67. Li L, Yang X (2018) The essential element manganese, oxidative stress, and metabolic diseases: links and interactions. Oxid Med Cell Longev 2018:1–11

    Google Scholar 

  68. Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health Part B 10:1–269

    Article  CAS  Google Scholar 

  69. Levine SN, Sonnier GB, Abreo K (1990) Effects of diabetes mellitus and aluminum toxicity on myocardial calcium transport. J Toxicol 65:137–148

    Article  CAS  Google Scholar 

  70. EMA (2022) ICH Q3D Elemental impurities-Scientific guideline European Medicines Agency. European Medicines Agency. https://www.ema.europa.eu/en/ich-q3d-elemental-impurities-scientific-guideline

Download references

Acknowledgements

Authors from AINST, Amity University thank UGC-DAE-CSR (Mumbai Centre) for the Project (CRS-M-326) and financial grant and fellowship to the Project Fellow (RSG) to carry out R&D work at RCD, BARC, Mumbai with Dr R Acharya as Principal Collaborator. Authors sincerely thank Dr P. K. Mohapatra, Associate Director, Radiochemistry and Isotope Group and Head, Radiochemistry Division, and Dr. S. Kannan, Former Director, RC and I Group, BARC for necessary permission and valuable guidance. Authors are thankful to Operation Crews of Reactor Group, Mr. Sudeep Kumar Samanta and Mrs. Priya V Mestry RCD BARC for their helping during experiment using INAA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arpita Datta or R. Acharya.

Ethics declarations

Conflict of interest

There is no conflict of interest of any kind whatsoever.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, R.S., Datta, A., Gupta, S. et al. Instrumental neutron activation analysis by utilizing pneumatic carrier facility at Dhruva reactor for estimation of minor and trace elements in antidiabetic ayurvedic formulations. J Radioanal Nucl Chem 332, 4301–4309 (2023). https://doi.org/10.1007/s10967-023-09131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09131-9

Keywords

Navigation