Skip to main content
Log in

Facile preparation of UiO-66 derivatives for the removal of Co(II) from aqueous solution: study on adsorption properties and irradiation stability

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, hydroxyl and carboxyl group functionalized Zr-based MOFs UiO-66 derivatives (UiO-66-R: UiO-66-(OH)2 and UiO-66-COOH) were prepared by a facile one-step method and used to remove Co(II) from simulated radioactive wastewater. The results showed that UiO-66-R have good adsorption properties with maximum adsorption capacities of 133.3 mg L−1 (UiO-66-(OH)2) and 125.6 mg L−1 (UiO-66-COOH). Furthermore, the Co(II) adsorption conforms to the pseudo-second-order kinetic model and Langmuir model, belonging to the single molecular layer chemisorption, and the adsorption processes are spontaneous and endothermic. XPS patterns illustrate that the coordination effect is crucial in determining the adsorption process of the two materials. To explore the irradiation stability, FT-IR, XRD and SEM were used to study the morphology and structure of materials after irradiation (20-80 kGy). The characterization analysis of UiO-66-R illustrated that UiO-66-(OH)2 and UiO-66-COOH showed little change before and after irradiation, which indicated that both materials have good irradiation stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu Y, Serrano A, Vaughan J, Southam G, Zhao L, Villa-Gomez D (2019) The influence of biologically produced sulfide-containing solutions on nickel and cobalt precipitation reactions and particle settling properties. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2019.105142

    Article  Google Scholar 

  2. Tang J, Sun H, Ma W, Feng M, Huang X (2020) Recent progress in developing crystalline ion exchange materials for the removal of radioactive ions. Chin J Struct Chem 39:2157–2171. https://doi.org/10.14102/j.cnki.0254-5861.2011-3018

    Article  CAS  Google Scholar 

  3. Wang LY, Lee MS (2017) Separation of Co(II) and Ni(II) from chloride leach solution of nickel laterite ore by solvent extraction with Cyanex 301. Int J Miner Process 166:45–52. https://doi.org/10.1016/j.minpro.2017.07.004

    Article  CAS  Google Scholar 

  4. Dambies L, Jaworska A, Zakrzewska-Trznadel G, Sartowska B (2010) Comparison of acidic polymers for the removal of cobalt from water solutions by polymer assisted ultrafiltration. J Hazard Mater 178:988–993. https://doi.org/10.1016/j.jhazmat.2010.02.035

    Article  CAS  PubMed  Google Scholar 

  5. Zhang M, Gu P, Yan S, Liu Y, Zhang G (2021) Effective removal of radioactive cobalt from aqueous solution by a layered metal sulfide adsorbent: mechanism, adsorption performance, and practical application. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.117775

    Article  Google Scholar 

  6. Adigun OA, Oninla VO, Babarinde NAA, Oyedotun KO, Manyala N (2020) Characterization of sugarcane leaf-biomass and investigation of its efficiency in removing nickel(II) chromium(III) and cobalt(II) ions from polluted water. Surf Interfaces. https://doi.org/10.1016/j.surfin.2020.100621

    Article  Google Scholar 

  7. Adibmehr Z, Faghihian H (2019) Preparation of highly selective magnetic cobalt ion-imprinted polymer based on functionalized SBA-15 for removal Co2+ from aqueous solutions. J Environ Health Sci Eng 17:1213–1225. https://doi.org/10.1007/s40201-019-00439-x

    Article  CAS  PubMed  Google Scholar 

  8. Vivas EL, Cho K (2021) Efficient adsorptive removal of Cobalt(II) ions from water by dicalcium phosphate dihydrate. J Environ Manag 283:111990. https://doi.org/10.1016/j.jenvman.2021.111990

    Article  CAS  Google Scholar 

  9. Siddiqui MN, Chanbasha B, Al-Arfaj AA, Kon’kova T, Ali I (2021) Super-fast removal of cobalt metal ions in water using inexpensive mesoporous carbon obtained from industrial waste material. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.101257

    Article  Google Scholar 

  10. Long JR, Yaghi OM (2009) The pervasive chemistry of metal-organic frameworks. Chem Soc Rev 38:1213–1214. https://doi.org/10.1039/b903811f

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Wang L, Hu J, Duttwyler S, Cui X, Xing H (2020) Solvent-dependent supramolecular self-assembly of boron cage pillared metal–organic frameworks for selective gas separation. CrystEngComm 22:2649–2655. https://doi.org/10.1039/d0ce00142b

    Article  CAS  Google Scholar 

  12. Dhainaut J, Bonneau M, Ueoka R, Kanamori K, Furukawa S (2020) Formulation of metal-organic framework inks for the 3D printing of robust microporous solids toward high-pressure gas storage and separation. ACS Appl Mater Interfaces 12:10983–10992. https://doi.org/10.1021/acsami.9b22257

    Article  CAS  PubMed  Google Scholar 

  13. Bauer G, Ongari D, Tiana D, Gäumann P, Rohrbach T, Pareras G, Tarik M, Smit B, Ranocchiari M (2020) Metal-organic frameworks as kinetic modulators for branched selectivity in hydroformylation. Nat Commun. https://doi.org/10.1038/s41467-020-14828-6

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lv S-W, Liu J-M, Li C-Y, Zhao N, Wang Z-H, Wang S (2019) A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122111

    Article  Google Scholar 

  15. Winterlich M, McHugh D, O’Toole E, Skordi K, O’Malley C, Sanii R, Tasiopoulos A, Erxleben A, Mayans J, Morrison L, McArdle P, Zaworotko MJ, Tylianakis E, Froudakis G, Papatriantafyllopoulou C (2021) Expanding the NUIG MOF family: synthesis and characterization of new MOFs for selective CO2 adsorption, metal ion removal from aqueous systems, and drug delivery applications. Dalton Trans 50:6997–7006. https://doi.org/10.1039/d1dt00940k

    Article  CAS  PubMed  Google Scholar 

  16. Shahriyari Far H, Hasanzadeh M, Najafi M, Masale Nezhad TR, Rabbani M (2021) Efficient removal of Pb(II) and Co(II) ions from aqueous solution with a chromium-based metal-organic framework/activated carbon composites. Ind Eng Chem Res 60:4332–4341. https://doi.org/10.1021/acs.iecr.0c06199

    Article  CAS  Google Scholar 

  17. Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107. https://doi.org/10.1016/j.ccr.2017.12.010

    Article  CAS  Google Scholar 

  18. Abdollahi N, Akbar Razavi SA, Morsali A, Hu ML (2020) High capacity Hg(II) and Pb(II) removal using MOF-based nanocomposite: Cooperative effects of pore functionalization and surface-charge modulation. J Hazard Mater 387:121667. https://doi.org/10.1016/j.jhazmat.2019.121667

    Article  CAS  PubMed  Google Scholar 

  19. Su S, Che R, Liu Q, Liu J, Zhang H, Li R, Jing X, Wang J (2018) Zeolitic imidazolate framework-67: a promising candidate for recovery of uranium (VI) from seawater. Colloids Surf A 547:73–80. https://doi.org/10.1016/j.colsurfa.2018.03.042

    Article  CAS  Google Scholar 

  20. Yuan G, Yu Y, Li J, Jiang D, Gu J, Tang Y, Qiu H, Xiong W, Liu N (2021) Facile fabrication of a noval melamine derivative-doped UiO-66 composite for enhanced Co(II) removal from aqueous solution. J Mol Liq. https://doi.org/10.1016/j.molliq.2021.115484

    Article  Google Scholar 

  21. Yuan G, Zhao C, Tu H, Li M, Liu J, Liao J, Yang Y, Yang J, Liu N (2018) Removal of Co(II) from aqueous solution with Zr-based magnetic metal-organic framework composite. Inorg Chim Acta 483:488–495. https://doi.org/10.1016/j.ica.2018.08.057

    Article  CAS  Google Scholar 

  22. Li M, Yuan G, Zeng Y, Peng H, Yang Y, Liao J, Yang J, Liu N (2021) Efficient removal of Co(II) from aqueous solution by flexible metal-organic framework membranes. J Mol Liq 324:114718–114999. https://doi.org/10.1016/j.molliq.2020.114718

    Article  CAS  Google Scholar 

  23. Yuan G, Tu H, Liu J, Zhao C, Liao J, Yang Y, Yang J, Liu N (2018) A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(II) from aqueous solutions. Chem Eng J 333:280–288. https://doi.org/10.1016/j.cej.2017.09.123

    Article  CAS  Google Scholar 

  24. Rada ZH, Abid HR, Sun H, Wang S (2015) Bifunctionalized metal organic frameworks, UiO-66-NO2-N (N = –NH2, –(OH)2, –(COOH)2), for enhanced adsorption and selectivity of CO2 and N2. J Chem Eng Data 60:2152–2161. https://doi.org/10.1021/acs.jced.5b00229

    Article  CAS  Google Scholar 

  25. Zhao B, Yuan L, Wang Y, Duan T, Shi W (2021) Carboxylated UiO-66 tailored for U(VI) and Eu(III) trapping: from batch adsorption to dynamic column separation. ACS Appl Mater Interfaces 13:16300–16308. https://doi.org/10.1021/acsami.1c00364

    Article  CAS  PubMed  Google Scholar 

  26. Yuan G, Tian Y, Liu J, Tu H, Liao J, Yang J, Yang Y, Wang D, Liu N (2017) Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution. Chem Eng J 326:691–699. https://doi.org/10.1016/j.cej.2017.06.024

    Article  CAS  Google Scholar 

  27. Silva A, Sousa KS, Germano A, Oliveira VV, Espínola J, Fonseca MG, Airoldi C, Arakaki T, Arakaki L (2009) A new organofunctionalized silica containing thioglycolic acid incorporated for divalent cations removal—a thermodyamic cation/basic center interaction. Colloids Surf A 332:144–149

    Article  CAS  Google Scholar 

  28. Zhang X-F, Wang Z, Feng Y, Zhong Y, Liao J, Wang Y, Yao J (2018) Adsorptive desulfurization from the model fuels by functionalized UiO-66(Zr). Fuel 234:256–262. https://doi.org/10.1016/j.fuel.2018.07.035

    Article  CAS  Google Scholar 

  29. Esrafili L, Firuzabadi FD, Morsali A, Hu ML (2021) Reuse of predesigned dual-functional metal organic frameworks (DF-MOFs) after heavy metal removal. J Hazard Mater 403:123696. https://doi.org/10.1016/j.jhazmat.2020.123696

    Article  CAS  PubMed  Google Scholar 

  30. Ali RM, Hamad HA, Hussein MM, Malash GF (2016) Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng 91:317–332. https://doi.org/10.1016/j.ecoleng.2016.03.015

    Article  Google Scholar 

  31. Farnane M, Tounsadi H, Elmoubarki R, Mahjoubi FZ, Elhalil A, Saqrane S, Abdennouri M, Qourzal S, Barka N (2017) Alkaline treated carob shells as sustainable biosorbent for clean recovery of heavy metals: kinetics, equilibrium, ions interference and process optimisation. Ecol Eng 101:9–20. https://doi.org/10.1016/j.ecoleng.2017.01.012

    Article  Google Scholar 

  32. Peres EC, Cunha JM, Dortzbacher GF, Pavan FA, Lima ÉC, Foletto EL, Dotto GL (2018) Treatment of leachates containing cobalt by adsorption on Spirulina sp. and activated charcoal. J Environ Chem Eng 6:677–685. https://doi.org/10.1016/j.jece.2017.12.060

    Article  CAS  Google Scholar 

  33. Ferri M, Campisi S, Gervasini A (2019) Nickel and cobalt adsorption on hydroxyapatite: a study for the de-metalation of electronic industrial wastewaters. Adsorption. https://doi.org/10.1007/s10450-019-00066-w

    Article  Google Scholar 

  34. Hashemian S, Saffari H, Ragabion S (2014) Adsorption of cobalt(II) from aqueous solutions by Fe3O4/bentonite nanocomposite. Water Air Soil Pollut. https://doi.org/10.1007/s11270-014-2212-6

    Article  Google Scholar 

  35. Zhao P, Guo C, Zhang Y, Xiao Y, Wu X, Zhao Y (2016) Macroscopic and modeling evidence for competitive adsorption of Co(II) and Th(IV) on carbon nanofibers. J Mol Liq 224:1305–1310. https://doi.org/10.1016/j.molliq.2016.10.114

    Article  CAS  Google Scholar 

  36. Jin Y, Wu Y, Cao J, Wu Y (2014) Adsorption behavior of Cr(VI), Ni(II), and Co(II) onto zeolite 13x. Desalin Water Treat 54:511–524. https://doi.org/10.1080/19443994.2014.883333

    Article  CAS  Google Scholar 

  37. Al-Ghouti MA, Daana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater 393:122383. https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  CAS  PubMed  Google Scholar 

  38. Hanna SL, Rademacher DX, Hanson DJ, Islamoglu T, Olszewski AK, Nenoff TM, Farha OK (2020) Structural features of zirconium-based metal-organic frameworks affecting radiolytic stability. Ind Eng Chem Res 59:7520–7526. https://doi.org/10.1021/acs.iecr.9b06820

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22106012 and 21876122), the Foundation of Key Laboratory of Radiation Physics and Technology of the Ministry of Education (2021SCURPT05), and the Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1408 and CSTB2022BSXM-JSX0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyuan Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 330 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Jiang, D., He, B. et al. Facile preparation of UiO-66 derivatives for the removal of Co(II) from aqueous solution: study on adsorption properties and irradiation stability. J Radioanal Nucl Chem 332, 4047–4056 (2023). https://doi.org/10.1007/s10967-023-09114-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09114-w

Keywords

Navigation