Skip to main content
Log in

Effect of radiolysis and radiolytic products of tri-iso-amyl phosphate on the extraction behavior of uranium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Tri-iso-amyl phosphate (TiAP) is a promising alternative extract agent to tri-n-butyl phosphate for spent fuel reprocessing. In this work, the effect of concentration and dominant radiolysis products of TiAP in γ-irradiated TiAP/n-dodecane (nDD) solution on the extraction of UO2(NO3)2 was investigated. The extraction efficiency of U(VI) increased significantly with absorbed dose in the absence of nitric acid due to the formation of di-iso-amyl phosphoric acid (HDiAP). Density functional theory calculation further proved that coordination energy between HDiAP and U(VI) is higher than that of TiAP. Extraction performance confirmed the synergistic effect of TiAP and HDiAP on U(VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sood DD, Patil SK (1996) Chemistry of nuclear fuel reprocessing: current status. J Radioanal Nucl Chem Artic 203(2):547–573

    Article  CAS  Google Scholar 

  2. Wright A, Paviet-Hartmann P (2010) Review of physical and chemical properties of tributyl phosphate/diluent/nitric acid systems. J Sep Sci Technol 45(12–13):1753–1762

    Article  CAS  Google Scholar 

  3. Das B, Kumar S, Mondal P, Kamachi Mudali U, Natarajan R (2012) Synthesis and characterization of red-oil from tri-iso-amyl phosphate/n-dodecane/nitric acid mixtures at elevated temperature. J Radioanal Nucl Chem 292(3):1161–1171

    Article  CAS  Google Scholar 

  4. Vasudeva Rao PR, Kolarik Z (1996) A review of third phase formation in extraction of actinides by neutral organophosphorus extractants. J Solvent Extr Ion Exch 14(6):955–993

    Article  Google Scholar 

  5. Tripathi SC, Ramanujam A, Gupta KK, Bindu P (2001) Studies on the identification of harmful radiolytic products of 30% TBP-n-dodecane-HNO3 by gas-liquid chromatography II. Formation and characterization of high molecular weight organophosphates. J Sep Sci Technol. 36(13):2863–2883

    Article  CAS  Google Scholar 

  6. Mishra S, Mallika C, Pandey NK, Kamachi Mudali U, Natarajan R (2015) Effect of radiolysis in altering the physiochemical and metal retention properties of solvent-diluent-acid systems. J Sep Sci Technol 50(11):1671–1676

    Article  CAS  Google Scholar 

  7. Serenko YuV, Yudin NV, Gritcenko RT, Rodin AV, Belova EV, Ponomarev AV (2021) Competitive processes of tributyl phosphate degradation in HNO3-saturated solution in Isopar-M during radiolysis and aging. J Radiat Phys Chem 185:109495

    Article  CAS  Google Scholar 

  8. Hasan SH, Shukla JP (2003) Tri-iso-amyl phosphate (TAP): An alternative extractant to tri-butyl phosphate (TBP) for reactor fuel reprocessing. J Radioanal Nucl Chem 258(3):563–573

    Article  CAS  Google Scholar 

  9. Sreenivasulu B, Suresh A, Sivaraman N, Vasudeva Rao PR (2014) Solvent extraction studies with some fission product elements from nitric acid media employing tri-iso-amyl phosphate and tri-n-butyl phosphate as extractants. J Radioanal Nucl Chem 303:2165–2172

    Google Scholar 

  10. Benadict Rakesh K, Suresh A, Vasudeva Rao PR (2014) Extraction and stripping behaviour of tri-iso-amyl phosphate and tri-n-butyl phosphate in n-dodecane with U(VI) in nitric acid media. J Radiochim Acta 102(7):619–628

    Article  CAS  Google Scholar 

  11. Suresh A, Srinivasan TG, Rao PRV (1994) Extraction of U(VI), Pu(IV) and Th(IV) by some trialkyl phosphates. J Solvent Extr Ion Exch 12(4):727–744

    Article  CAS  Google Scholar 

  12. Suresh A, Srinivasan TG, Rao PRV (2009) Parameters influencing third-phase formation in the extraction of Th(NO3)4 by some trialkyl phosphates. J Solvent Extr Ion Exch 27(2):132–158

    Article  CAS  Google Scholar 

  13. Singh ML (2021) Excess properties of binary mixtures of tri–iso-amyl phosphate + n–hexane (or n-dodecane): physical significance of coefficients of Redlich-Kister type equation. J Mol Liq 341:117203

    Article  CAS  Google Scholar 

  14. Mishra S, Pandey NK (2019) Physiochemical properties of γ-irradiated tri-iso-amyl phosphate–dodecane system: effect of aqueous phase acidity. J Solvent Extr Ion Exch 37(6):446–460

    Article  CAS  Google Scholar 

  15. Mishra S, Kumar M, Pandey NK (2020) Aqueous solubility of tri-iso-amyl phosphate (TiAP): effect of acidity, temperature and metal ions. J Prog Nucl Energy 119:103166

    Article  CAS  Google Scholar 

  16. Muthukumar M, Kumar S, Sinha PK, Mudali UK, Natarajan R (2011) Estimation of PVT properties and vapour pressure of alternate PUREX/UREX extractant tri-iso-amyl phosphate. J Radioanal Nucl Chem 288(3):819–821

    Article  CAS  Google Scholar 

  17. Mishra S, Desigan N, Venkatesan KA, Ananthasivan K (2021) Hydrolytic degradation of tri-iso-amyl phosphate-dodecane system. J Mol Liq 334:116512

    Article  CAS  Google Scholar 

  18. Sreenivasulu B, Suresh A, Rajeswari S, Ramanathan N, Antony MP, Sivaraman N, Joseph M (2017) Physicochemical properties and radiolytic degradation studies on tri-iso-amyl phosphate (TiAP). J Radiochim Acta 105(3):249–261

    Article  CAS  Google Scholar 

  19. Sahoo TK, Srinivasan TG, Vasudeva Rao PR (2011) Note: effect of temperature in the extraction of uranium and plutonium by tri-iso-amyl phosphate. J Solvent Extr Ion Exch 29(2):260–269

    Article  CAS  Google Scholar 

  20. Suresh A, Srinivasan TG, Vasudeva Rao PR (2009) The effect of the structure of trialkyl phosphates on their physicochemical properties and extraction behavior. J Solvent Extr Ion Exch 27(2):258–294

    Article  CAS  Google Scholar 

  21. Li F, Qin Y, Liao W, Li F, Lan T, Ding S, Liao J, Yang J, Yang Y, Feng W, Liu N (2022) Gamma and beta radiolysis of tri-iso-amyl phosphate: degradation of tri-iso-amyl phosphate and formation of di-iso-amyl phosphoric acid. J Radiat Phys Chem 199:110354

    Article  CAS  Google Scholar 

  22. Mincher Bruce J, Mezyk SP (2009) Radiation chemical effects on radiochemistry: a review of examples important to nuclear power. J Radiochim Acta 97:519–534

    Google Scholar 

  23. Mincher Bruce J, Modolo G, Mezyk SP (2009) Review article: The effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis. J Solvent Extr Ion Exch. 27(1):1–25

    Article  Google Scholar 

  24. Pearson J, Nilsson M (2014) Radiolysis of tributyl phosphate by particles of high linear energy transfer. J Solvent Extr Ion Exch 32(6):584–600

    Article  CAS  Google Scholar 

  25. Xu W, Zhou Y, Huang D, Su M, Wang K, Xiang M, Hong M (2015) Luminescent sensing profiles based on anion-responsive lanthanide(iii) quinolinecarboxylate materials: solid-state structures, photophysical properties, and anionic species recognition. J Mater Chem 3(9):2003–2015

    CAS  Google Scholar 

  26. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 98(7):5648–5652

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the Colle-salvetti correlation-energy formula into a functional of the electron density. J Phys Rev 37(2):785–789

    Article  CAS  Google Scholar 

  28. Cao X, Dolg M (2004) Segmented contraction scheme for small-core actinide pseudopotential basis sets. J Mol Struct 673(1–3):203–209

    Article  CAS  Google Scholar 

  29. Küchle W, Dolg M, Stoll H, Preuss H (1994) Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J Chem Phys. 100(10):7535–7542

    Article  Google Scholar 

  30. Dolg M, Stoll H, Preuss H (1989) Energy-adjusted ab initio pseudopotentials for the rare earth elements. J Chem Phys 90(3):1730–1734

    Article  CAS  Google Scholar 

  31. Dolg M, Stoll H, Preuss H (1993) A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. J Theor Chim Acta 85(6):441–450

    Article  CAS  Google Scholar 

  32. Dolg M, Stoll H, Savin A, Preuss H (1989) Energy-adjusted pseudopotentials for the rare earth elements. J Theor Chim Acta 75(3):173–194

    Article  CAS  Google Scholar 

  33. Cao X, Dolg M, Stoll H (2003) Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J Chem Phys 118(2):487–496

    Article  CAS  Google Scholar 

  34. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem 113(18):6378–6396

    Article  CAS  Google Scholar 

  35. Struebing H, Ganase Z, Karamertzanis PG, Siougkrou E, Haycock P, Piccione PM, Armstrong A, Galindo A, Adjiman CS (2013) Computer-aided molecular design of solvents for accelerated reaction kinetics. J Nat Chem 5(11):952–957

    Article  CAS  Google Scholar 

  36. Bellido AV, Rubenich MN (1984) Influence of the diluent on the radiolytic degradation of TBP in TBP, 30%(v/v)-diluent-HNO3 systems. J Radiochim Acta 36(1–2):61–64

    Article  Google Scholar 

  37. Li R, Cao X, Zhao H, Liu C, Li Z, Wang J, Zhang L, Li Q (2018) Radiolysis products and degradation mechanism studies on tri-iso-amyl phosphate (TiAP). J Radiochim Acta 106(3):239–247

    Article  CAS  Google Scholar 

  38. Razvi J, Merklin JF (1980) The radiolysis of dodecane-tributyl phosphate solutions II. Liquid products. J Nucl Instrum Methods 169(1):223–226

    Article  CAS  Google Scholar 

  39. Tripathi S, Sumathi S, Ramanujam A (1999) Effects of solvent recycling on radiolytic degradation of 30% tributyl phosphate–n-dodecane–HNO3 system. J Sep Sci Technol 34(14):2887–2903

    Article  CAS  Google Scholar 

  40. Kong F, Liao J, Ding S, Yang Y, Huang H, Yang J, Tang J, Liu N (2013) Extraction and thermodynamic behavior of U(VI) and Th(IV) from nitric acid solution with tri-iso-amyl phosphate. J Radioanal Nucl Chem 298(1):651–656

    Article  CAS  Google Scholar 

  41. Anderson TL, Braatz A, Ellis RJ, Antonio MR, Nilsson M (2013) Synergistic extraction of dysprosium and aggregate formation in solvent extraction systems combining TBP and HDBP. J Solvent Extr Ion Exch 31(6):617–633

    Article  CAS  Google Scholar 

  42. May I, Taylor RJ, Wallwork AL, Hastings JJ, Fedorov YuS, Ya ZB, Mishin EN, Arkhipov SA, Blazheva IV, Ya PL, Livens FR, Charnock JM (2000) The influence of dibutyl phosphate on actinide extraction by 30% tributyl phosphate. J Radiochim Acta 88(5):283–290

    Article  CAS  Google Scholar 

  43. Sarkar S, Suresh A, Sivaraman N (2020) Alpha and gamma degradation behavior of tri-n-alkyl phosphates and tris(2-methylbutyl) phosphate: a comparative study. J Radiat Phys Chem 176:108923

    Article  CAS  Google Scholar 

  44. Sk J, Pathak S, Sengupta A (2021) Analytical application of ionic liquid in determination of trace metallic constituents in U matrix by ICP-OES: a “green” approach for drastic reduction in organic waste burden and time of analysis. J Mol Liq 343:117584

    Article  Google Scholar 

  45. Hahn HT, Vander Wall EM (1964) Complex formation in the dilute uranyl nitrate-nitric acid-dibutyl phosphoric acid-tributyl phosphate-Amsco system. J Inorg Nucl Chem 26(1):191–202

    Article  CAS  Google Scholar 

  46. Shukla JP, Gautam MM, Kedari CS, Hasan SH, Rupainwar DC (1997) Extraction of uranium(VI), plutonium(IV) and some fission products by tri-iso-amyl phosphate. J Radioanal Nucl Chem 219(1):61–67

    Article  CAS  Google Scholar 

  47. Das A, Sahu P, SkM A (2017) Molecular dynamics simulation for the calibration of the OPLS force field using DFT derived partial charges for the screening of alkyl phosphate ligands by studying structure, dynamics, and thermodynamics. J Chem Eng Data 62(8):2280–2295

    Article  CAS  Google Scholar 

  48. Huei Meznarich, Deborah A Penchoff (2021) Rare earth elements and actinides: progress in computational science applications ACS symposium series. Washington, DC

Download references

Acknowledgements

The authors wish to acknowledge the Department of Applied Chemistry of Peking University for providing 60Co source. The measurements of FTMS, ICP-OES and ICP-MS were performed at the Analytical Instrumentation Center of Peking University. The help from PKUAIC (Dr. Xiaoran He, Dr. Li Zhang and Dr. Jiahui Liu) was acknowledged. The authors also wish to acknowledge Prof. Song-Dong Ding (Sichuan University) for his help in providing TiAP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Peng or Huibo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first two authors contributed equally to the work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 216 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Ao, Y., Wang, Y. et al. Effect of radiolysis and radiolytic products of tri-iso-amyl phosphate on the extraction behavior of uranium. J Radioanal Nucl Chem 332, 4089–4099 (2023). https://doi.org/10.1007/s10967-023-09113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09113-x

Keywords

Navigation