Skip to main content
Log in

Beta decay study of 126Sb and 126mSb

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

High Resolution Gamma-ray Spectroscopy (HRGS) and Total Absorption Gamma-ray Spectroscopy (TAGS) techniques of beta decay study and facilities for such techniques at VECC, Kolkata have been described. The preliminary results of the HRGS experiment performed at VECC to study the beta decay of 126Sb, an important nucleus for the reactor decay heat estimation, are presented. The observation of a 928-keV gamma ray confirmed the 2703.6 keV state in 126Te. The half-lives of both the beta-decaying states in 126Sb could be uniquely measured in this work. The results are useful for future TAGS measurements of the 126Sb beta decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nácher E et al (2004) Deformation of the N=Z nucleus 76Sr using β-decay studies. Phys Rev Lett 92:232501

    Article  PubMed  Google Scholar 

  2. Poirier E et al (2004) B(GT) strength from β-decay measurements and inferred shape mixing in 74Kr. Phys Rev C 69:034307

    Article  Google Scholar 

  3. James J (1969) Energy released in fission. J Nucl Energy 23:517–536

    Article  CAS  Google Scholar 

  4. Nichols AL et al (2023) Improving fission-product decay data for reactor applications: part I-decay heat. Euro Phys Jour A 59:78

    Article  CAS  Google Scholar 

  5. Duchemin B, Nordborg C (1988) International comparison study of codes used in decay heat calculations. Report No. NEANDC-246 'U'/NEACRP-303 'L' and "decay heat calculation: An International Nuclear Code Comparison", Report No. NEACRP-319 "L" NEANDC-275 "U"

  6. Iimura H, Katakura J, Ohya S (2022) Nuclear data sheets for A = 180. Nucl Data Sheets 180:1

    Article  CAS  Google Scholar 

  7. Bargholtz C et al (1975) Levels and transitions in126Te. Z Phys A 272:3–11

    Article  CAS  Google Scholar 

  8. Izosinov IN et al (2004) Beta-decay strength measurement, total beta-decay energy determination, and dcay-scheme completeness testing by total absorption γ-ray spectroscopy. Phys Atom Nucl 67:1876–1883

    Article  Google Scholar 

  9. Hardy JC et al (1977) The essential decay of pandemonium: A demonstration of errors in complex beta-decay schemes. Phys Lett 71B:307–310

    Article  CAS  Google Scholar 

  10. Tain JL, Cano-Ott D (2007) The influence of the unknown de-excitation pattern in the analysis of β-decay total absorption spectra. Nucl Instrum Meth Phys Res A 571:719–727

    Article  CAS  Google Scholar 

  11. Tain JL, Cano-Ott D (2007) Algorithms for the analysis of β-decay total absorption spectra. Nucl Instrum Meth Phys Res A 571:728–738

    Article  CAS  Google Scholar 

  12. Cano-Ott D et al (1999) Monte Carlo simulation of the response of a large NaI(Tl) total absorption spectrometer for β-decay studies. Nucl Instrum Meth Phys Res A 430:333–347

    Article  CAS  Google Scholar 

  13. Cano-Ott D et al (1999) Pulse pileup correction of large NaI(Tl) total absorption spectra using the true pulse shape. Nucl Instrum Meth Phys Res A 430:488–497

    Article  CAS  Google Scholar 

  14. Rubio B et al (2017) Beta decay studies with total absorption spectroscopy and the Lucrecia spectrometer at ISOLDE. J Phys G Nucl Part Phys 44:084004

    Article  Google Scholar 

  15. Algora A et al (2010) Reactor decay heat in 239Pu: solving the γ discrepancy in the 4–3000-s cooling period. Phys Rev Lett 105:202501

    Article  CAS  PubMed  Google Scholar 

  16. Algora A et al (2021) Beta-decay studies for applied and basic nuclear physics. Eur Phys J A 57:85

    Article  CAS  Google Scholar 

  17. Mukherjee G et al (2014) A unique TAS setup for high multiplicity events at VECC, Kolkata using BaF2 detectors. EPJ Web Conf 66:11026

    Article  Google Scholar 

  18. Mukherjee G et al (2010) Simulation study of different geometries for TAGS measurement using BaF2 detectors. Proc DAE Symp Nucl Phys 55:708

    Google Scholar 

  19. Dhal A et al (2017) Decay measurements of 43K(β)43Ca by HRS and TAS. EPJ Web Conf 146:10013

    Article  Google Scholar 

  20. Pandit D et al (2010) A realistic technique for selection of angular momenta from hot nuclei: A case study with 4He + 115In → 119Sb* at ELab = 35 MeV. Nucl Inst Meth Phys Res A 624:148–152

    Article  CAS  Google Scholar 

  21. Gavron A (1980) Statistical model calculations in heavy ion reactions. Phys Rev C 21:230

    Article  CAS  Google Scholar 

  22. Nayak SS, Mukherjee G (2022) SIMSPEC-G: A simple code for the simulation of HPGe detectors for gamma rays up to 1 MeV. JINST 17:P07030

    Article  Google Scholar 

  23. Bhattacharya S et al (2021) Energy response and fast timing characteristics of 1.5 x 1.5 CeBr scintillator. Nucl Inst Meth Phys Res A 1014:165737

    Article  CAS  Google Scholar 

  24. Das S et al (2022) Timing characteristics of the R13089-100 photomultiplier tube coupled with 1.5" × 1.5" CeBr 3 scintillators and its application in lifetime measurements. JINST 17:P09012

    Article  Google Scholar 

  25. Nayak SS, Mukherjee G (2022) Basic software suite for nuclear data sorting and automatic calibration. Proc DAE Symp Nucl Phys 66:1192

    Google Scholar 

Download references

Acknowledgements

The efforts of the accelerator operators are thankfully acknowledged for providing good quality alpha beam during the experiment. Authors are thankful to S. Imran for his help during the experiment. Sneha Das, Shabir Dar and Sansaptak Basu acknowledge the financial support of CSIR and UGC, Govt. of India for support towards their Ph.D fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mukherjee.

Ethics declarations

Conflict of interest

There is no conflict of interest of any of the authors in this manuscript in the data and results presented in this manuscript or in any other way.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, G., Nayak, S.S., Datta, J. et al. Beta decay study of 126Sb and 126mSb. J Radioanal Nucl Chem 333, 1531–1539 (2024). https://doi.org/10.1007/s10967-023-09110-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09110-0

Keywords

Navigation