Skip to main content
Log in

Adsorption of uranium (VI) by a MgAl-DHBDC/LDH composite: kinetic, mechanistic and thermodynamic studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A magnesium aluminum bimetallic organic framework derivative (MgAl-DHBDC/LDH composite) was prepared by etching MgAl bimetallic MOF template and used to remove U(VI) in aqueous solution. Compared to MgAl-DHBDC, the stability, dispersibility and removal ratio of U(VI) with MgAl-DHBDC/LDH were improved significantly over a wide pH range. The adsorption of uranium by MgAl-DHBDC/LDH was mainly multilayer physical adsorption, and the adsorption process was a spontaneous endothermic process. Moreover, the removal ratio of U(VI) by the MgAl-DHBDC/LDH composite remained above 90% after 4 cycles, indicating good regeneration performance. The MgAl-DHBDC/LDH composite shows great potential in the remediation of radionuclide uranium wastewater.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are the property of Yang Wang (University of South China, China); they are available from the corresponding author who will inform Yang Wang that the data will be released upon reasonable request.

References

  1. Xie Y, Chen C, Ren X, Wang X, Wang H, Wang X (2019) Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog Mater Sci 103:180–234. https://doi.org/10.1016/j.pmatsci.2019.01.005

    Article  CAS  Google Scholar 

  2. Pan N, Tang J, Hou D, Lei H, Zhou D, Ding J (2021) Enhanced uranium uptake from acidic media achieved on a novel iron phosphate adsorbent. Chem Eng J 423:130267. https://doi.org/10.1016/j.cej.2021.130267

    Article  CAS  Google Scholar 

  3. Wan Nafi A, Taseidifar M (2022) Removal of hazardous ions from aqueous solutions: current methods, with a focus on green ion flotation. J Environ Manag 319:115666. https://doi.org/10.1016/j.jenvman.2022.115666

    Article  CAS  Google Scholar 

  4. Şenol ZM, Keskin ZS, Şimşek S (2023) Synthesis and characterization of a new hybrid polymer composite (pollene@polyacrylamide) and its applicability in uranyl ions adsorption. J Radioanal Nucl Chem 332(6):2239–2248. https://doi.org/10.1007/s10967-023-08820-9

    Article  CAS  Google Scholar 

  5. Liu H, Fu T, Mao Y (2022) Metal-organic framework-based materials for adsorption and detection of uranium(VI) from aqueous solution. ACS Omega 7(17):14430–14456. https://doi.org/10.1021/acsomega.2c00597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Şenol ZM, Şenol Arslan D, Şimşek S (2019) Preparation and characterization of a novel diatomite-based composite and investigation of its adsorption properties for uranyl ions. J Radioanal Nucl Chem 321(3):791–803. https://doi.org/10.1007/s10967-019-06662-y

    Article  CAS  Google Scholar 

  7. Peng H, Xiong W, Yang Z, Xu Z, Cao J, Jia M, Xiang Y (2022) Advanced MOFs@aerogel composites: construction and application towards environmental remediation. J Hazard Mater 4:32. https://doi.org/10.1016/j.jhazmat.2022.128684

    Article  CAS  Google Scholar 

  8. Cai G, Yan P, Zhang L, Zhou HC, Jiang HL (2021) Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chem Rev 121(20):12278–12326. https://doi.org/10.1021/acs.chemrev.1c00243

    Article  CAS  PubMed  Google Scholar 

  9. Ling JL, Wu CD (2022) Transformation of metal-organic frameworks with retained networks. Chem Commun 58(62):8602–8613. https://doi.org/10.1039/d2cc02865d

    Article  CAS  Google Scholar 

  10. Wang G, Huang D, Cheng M, Chen S, Zhang G, Lei L, Chen Y, Du L, Li R, Liu Y (2022) Metal-organic frameworks template-directed growth of layered double hydroxides: a fantastic conversion of functional materials. Coord Chem Rev 460:214467. https://doi.org/10.1016/j.ccr.2022.214467

    Article  CAS  Google Scholar 

  11. Feng Y, Yao J (2022) Tailoring the structure and function of metal organic framework by chemical etching for diverse applications. Coord Chem Rev 470:214699. https://doi.org/10.1016/j.ccr.2022.214699

    Article  CAS  Google Scholar 

  12. He S, Li Z, Wang J, Wen P, Gao J, Ma L, Yang Z, Yang S (2016) MOF-derived NixCo1−x(OH)2 composite microspheres for high-performance supercapacitors. RSC Adv 6(55):49478–49486. https://doi.org/10.1039/c6ra03992h

    Article  CAS  Google Scholar 

  13. Chen TT, Wang FF, Cao S, Bai Y, Zheng SS, Li WT, Zhang ST, Hu SX, Pang H (2022) In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries. Adv Mater 34(30):2201779. https://doi.org/10.1002/adma.202201779

    Article  CAS  Google Scholar 

  14. Guo Y, Zhang J, Dong LZ, Xu Y, Han W, Fang M, Liu HK, Wu Y, Lan YQ (2017) Syntheses of exceptionally stable aluminum(III) metal-organic frameworks: how to grow high-quality, large, single crystals. Chemistry 23(61):15518–15528. https://doi.org/10.1002/chem.201703682

    Article  CAS  PubMed  Google Scholar 

  15. Wang LJ, Deng H, Furukawa H, Gandara F, Cordova KE, Peri D, Yaghi OM (2014) Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg Chem 53(12):5881–5883. https://doi.org/10.1021/ic500434a

    Article  CAS  PubMed  Google Scholar 

  16. Leus K, Bogaerts T, De Decker J, Depauw H, Hendrickx K, Vrielinck H, Van Speybroeck V, Van Der Voort P (2016) Systematic study of the chemical and hydrothermal stability of selected “stable” metal organic frameworks. Microporous Mesoporous Mater 226:110–116. https://doi.org/10.1016/j.micromeso.2015.11.055

    Article  CAS  Google Scholar 

  17. Lv Z, Wang H, Chen C, Yang S, Chen L, Alsaedi A, Hayat T (2019) Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent. J Colloid Interface Sci 537:A1–A10. https://doi.org/10.1016/j.jcis.2018.11.062

    Article  CAS  PubMed  Google Scholar 

  18. Lyu M, Chen CP, Buffet JC, O’Hare D (2020) A facile synthesis of layered double hydroxide based core@shell hybrid materials. New J Chem 44(24):10095–10101. https://doi.org/10.1039/c9nj06341b

    Article  CAS  Google Scholar 

  19. Wu J, Zheng Z, Zhu K, Xiang C, Wang J, Liu J (2022) Adsorption performance and mechanism of g-C3N4/UiO-66 composite for U(VI) from aqueous solution. J Radioanal Nucl Chem 331(1):469–481. https://doi.org/10.1007/s10967-021-08116-w

    Article  CAS  Google Scholar 

  20. Guo X, Wang J (2019) A general kinetic model for adsorption: Theoretical analysis and modeling. J Mol Liquids 288:111100. https://doi.org/10.1016/j.molliq.2019.111100

    Article  CAS  Google Scholar 

  21. Chen X, Hossain MF, Duan C, Lu J, Tsang YF, Islam MS, Zhou Y (2022) Isotherm models for adsorption of heavy metals from water—a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.135545

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lv Z, Yang S, Chen L, Li Y, Chen C (2018) Enhanced removal of uranium(VI) from aqueous solution by a novel LDH@MOF-76 composite. Sci Sin Chim 49(1):53–64. https://doi.org/10.1360/n032018-00112

    Article  Google Scholar 

  23. Zhang X, Chen Z, Liu X, Hanna SL, Wang X, Taheri-Ledari R, Maleki A, Li P, Farha OK (2020) A historical overview of the activation and porosity of metal-organic frameworks. Chem Soc Rev 49(20):7406–7427. https://doi.org/10.1039/d0cs00997k

    Article  CAS  PubMed  Google Scholar 

  24. Xin C, Ren Y, Zhang Z, Liu L, Wang X, Yang J (2021) Enhancement of hydrothermal stability and CO2 adsorption of Mg-MOF-74/MCF composites. ACS Omega 6(11):7739–7745. https://doi.org/10.1021/acsomega.1c00098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Z, Bilegsaikhan A, Jerozal RT, Pitt TA, Milner PJ (2021) Evaluating the robustness of metal-organic frameworks for synthetic chemistry. ACS Appl Mater Interfaces 13(15):17517–17531. https://doi.org/10.1021/acsami.1c01329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim H, Hong CS (2021) MOF-74-type frameworks: tunable pore environment and functionality through metal and ligand modification. CrystEngComm 23(6):1377–1387. https://doi.org/10.1039/d0ce01870h

    Article  CAS  Google Scholar 

  27. Liu J, Xue J, Yang G-P, Dang L-L, Ma L-F, Li D-S, Wang Y-Y (2022) Recent advances of functional heterometallic-organic framework (HMOF) materials: design strategies and applications. Coord Chem Rev 463:214521. https://doi.org/10.1016/j.ccr.2022.214521

    Article  CAS  Google Scholar 

  28. Hashemi L, Masoomi MY, Garcia H (2022) Regeneration and reconstruction of metal-organic frameworks: Opportunities for industrial usage. Coord Chem Rev 472:214776. https://doi.org/10.1016/j.ccr.2022.214776

    Article  CAS  Google Scholar 

  29. Lou J, Fu Q, Yu L, Yuan H, Zhao J, Wang L, Shi D, Mo C, Luo J (2022) Highly effective removal of Pb2+ from wastewater by nickel-based metal organic framework. J Solid State Chem 315:123535. https://doi.org/10.1016/j.jssc.2022.123535

    Article  CAS  Google Scholar 

  30. Erdoğan Ü (2023) Ultrasonic assisted propolis extraction: characterization by ATR-FTIR and determination of its total antioxidant capacity and radical scavenging ability. Int J Second Metab 10(2):231–239. https://doi.org/10.21448/ijsm.1167773

    Article  Google Scholar 

  31. Svensson Grape E, Chacón-García AJ, Rojas S, Pérez Y, Jaworski A, Nero M, Åhlén M, Martínez-Ahumada E, Galetsa Feindt AE, Pepillo M, Narongin-Fujikawa M, Ibarra IA, Cheung O, Baresel C, Willhammar T, Horcajada P, Inge AK (2023) Removal of pharmaceutical pollutants from effluent by a plant-based metal–organic framework. Nat Water 1(5):433–442. https://doi.org/10.1038/s44221-023-00070-z

    Article  Google Scholar 

  32. Yang L, Wang Q, Yao H, Yang Q, Lu X, Wu Z, Liu R, Shi K, Ma S (2022) The confinement effect of layered double hydroxides on intercalated pyromellitic acidic anions and highly selective uranium extraction from simulated seawater. Dalton Trans 51(21):8327–8339. https://doi.org/10.1039/d2dt01278b

    Article  CAS  PubMed  Google Scholar 

  33. Wang Q, Wang H, Yang L, Yao H, Wu Z, Yu T, Shi K, Ma S (2022) Highly selective and ultrafast uptake of uranium from seawater by layered double hydroxide co-intercalated with acetamidoxime and carboxylic anions. J Mater Chem A 10(34):17520–17531. https://doi.org/10.1039/d2ta01952c

    Article  CAS  Google Scholar 

  34. Cheng W, Tang H, Kai T, Zhao R, Wang J, Ding C (2022) Design anion regulated layered double hydroxide and explore its theoretical mechanism of immobilizing uranium. J Hazard Mater 437:129352. https://doi.org/10.1016/j.jhazmat.2022.129352

    Article  CAS  PubMed  Google Scholar 

  35. Liu S, Qiu Y, Liu Y, Zhang W, Dai Z, Srivastava D, Kumar A, Pan Y, Liu J (2022) Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New J Chem 46(29):13818–13837. https://doi.org/10.1039/d2nj01994a

    Article  CAS  Google Scholar 

  36. Muhire C, Zhang D, Xu X (2022) Adsorption of uranium (VI) ions by LDH intercalated with l-methionine in acidic water: kinetics, thermodynamics and mechanisms. Results Eng 16:100686. https://doi.org/10.1016/j.rineng.2022.100686

    Article  CAS  Google Scholar 

  37. Şenol ZM, Şimşek S, Özer A, Şenol Arslan D (2020) Synthesis and characterization of chitosan–vermiculite composite beads for removal of uranyl ions: isotherm, kinetics and thermodynamics studies. J Radioanal Nucl Chem 327(1):159–173. https://doi.org/10.1007/s10967-020-07481-2

    Article  CAS  Google Scholar 

  38. Guo X, Ruan Y, Diao Z, Shih K, Su M, Song G, Chen D, Wang S, Kong L (2021) Environmental-friendly preparation of Ni–Co layered double hydroxide (LDH) hierarchical nanoarrays for efficient removing uranium (VI). J Clean Prod 308:127384. https://doi.org/10.1016/j.jclepro.2021.127384

    Article  CAS  Google Scholar 

  39. Nie X, Dong F, Liu M, He H, Sun S, Bian L, Yang G, Zhang W, Qin Y, Huang R, Li Z, Ren W, Wang L (2017) Microbially mediated stable uranium phosphate nano-biominerals. J Nanosci Nanotechnol 17(9):6771–6780. https://doi.org/10.1166/jnn.2017.14463

    Article  CAS  Google Scholar 

  40. Liu X, Xie S, Wang G, Huang X, Duan Y, Liu H (2021) Fabrication of environmentally sensitive amidoxime hydrogel for extraction of uranium (VI) from an aqueous solution. Colloids Surf A Physicochem Eng Asp 611:125813. https://doi.org/10.1016/j.colsurfa.2020.125813

    Article  CAS  Google Scholar 

  41. Li Y-H, Wang C-C, Zeng X, Sun X-Z, Zhao C, Fu H, Wang P (2022) Seignette salt induced defects in Zr-MOFs for boosted Pb(II) adsorption: universal strategy and mechanism insight. Chem Eng J 442:136276. https://doi.org/10.1016/j.cej.2022.136276

    Article  CAS  Google Scholar 

  42. Li S, Jin Y, Hu Z, Liu Y, Wu S, Wang Y, Wang G (2021) Performance and mechanism for U(VI) adsorption in aqueous solutions with amino-modified UiO-66. J Radioanal Nucl Chem 330(3):857–869. https://doi.org/10.1007/s10967-021-07968-6

    Article  CAS  Google Scholar 

  43. Ren X, Wang C-C, Li Y, Wang C-Y, Wang P, Gao S (2022) Ag(I) removal and recovery from wastewater adopting NH2-MIL-125 as efficient adsorbent: a 3Rs (reduce, recycle and reuse) approach and practice. Chem Eng J 442:136306. https://doi.org/10.1016/j.cej.2022.136306

    Article  CAS  Google Scholar 

  44. Zhang L, Wang LL, le Gong L, Feng XF, Luo MB, Luo F (2016) Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of U(VI) ions. J Hazard Mater 311:30–36. https://doi.org/10.1016/j.jhazmat.2016.01.082

    Article  CAS  PubMed  Google Scholar 

  45. Chen X, Xie S, Wang G, Liu H, Guo Y, Yang S, Wu S, Liu X (2021) The performance and mechanism of U(VI) removal from aqueous solutions by a metal–organic framework (DUT-69). J Radioanal Nucl Chem 328(1):181–194. https://doi.org/10.1007/s10967-021-07645-8

    Article  CAS  Google Scholar 

  46. Tu J, Peng X, Wang S, Tian C, Deng H, Dang Z, Lu G, Shi Z, Lin Z (2019) Effective capture of aqueous uranium from saline lake with magnesium-based binary and ternary layered double hydroxides. Sci Total Environ 677:556–563. https://doi.org/10.1016/j.scitotenv.2019.04.429

    Article  CAS  PubMed  Google Scholar 

  47. Wang P, Yin L, Wang X, Zhao G, Yu S, Song G, Xie J, Alsaedi A, Hayat T, Wang X (2018) l-cysteine intercalated layered double hydroxide for highly efficient capture of U(VI) from aqueous solutions. J Environ Manag 217:468–477. https://doi.org/10.1016/j.jenvman.2018.03.112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51904155), Natural Science Foundation of Hunan Province (2022JJ30490), and Education Department Fund of Hunan Province of China (21C0285, 21B0432).

Author information

Authors and Affiliations

Authors

Contributions

SL: Resources, Supervision, Writing—review and editing. YW: Conceptualization, Methodology, Investigation, Writing—original draft. JH: Validation, Writing—review and editing. JQ: Validation, Writing—review and editing. YY: Formal analysis, Writing—review and editing. ZX: Formal analysis, Writing—review and editing. GW: Resources, Writing—review and editing.

Corresponding author

Correspondence to Guohua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, Y., He, J. et al. Adsorption of uranium (VI) by a MgAl-DHBDC/LDH composite: kinetic, mechanistic and thermodynamic studies. J Radioanal Nucl Chem 332, 4255–4269 (2023). https://doi.org/10.1007/s10967-023-09106-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09106-w

Keywords

Navigation