Skip to main content
Log in

Adsorption of uranium (VI) in aqueous solutions by phosphorylated absorbent resin porous carbon

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, phosphorus-containing resin carbon (PRC) was prepared by freeze-drying and carbonization using sodium hexametaphosphate and a polymeric absorbent resin as raw materials. The adsorbents were characterized using infrared spectroscopy and scanning electron microscopy. The effects of pH value, adsorption time and temperature on uranium adsorption by PRC were investigated via static experiments. The adsorption process was analyzed via kinetic and isotherm models. The results showed that the equilibrium time of uranium adsorption by PRC was approximately 60 min, and the adsorption amount of uranium (VI) reached 909 mg g−1 at a pH of 6.0 and temperature of 313.15 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sarkar A (2019) Nuclear power and uranium mining: current global perspectives and emerging public health risks. J Public Health Policy 40:383–392. https://doi.org/10.1057/s41271-019-00177-2

    Article  PubMed  Google Scholar 

  2. Chen T, Yu KF, Dong CX, Yuan X, Gong X, Lian J, Cao X, Li MZ, Zhou L, Hu BW, He R, Zhu WK, Wang XK (2022) Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2022.214615

    Article  Google Scholar 

  3. Guo H, Mei P, Xiao JT, Huang XS, Ishag A, Sun YB (2021) Carbon materials for extraction of uranium from seawater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.130411

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hu B, Wang H, Liu R, Qiu M (2021) Highly efficient U(VI) capture by amidoxime/carbon nitride composites: evidence of EXAFS and modeling. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.129743

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cheng Y, He P, Dong F, Nie X, Ding C, Wang S, Zhang Y, Liu H, Zhou S (2019) Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water. Chem Eng J 367:198–207. https://doi.org/10.1016/j.cej.2019.02.149

    Article  CAS  Google Scholar 

  6. Wen S, Sun Y, Liu R, Chen L, Wang J, Peng S, Ma C, Yuan Y, Gong W, Wang N (2021) Supramolecularly poly(amidoxime)-loaded macroporous resin for fast uranium recovery from seawater and uranium-containing wastewater. ACS Appl Mater Interfaces 13:3246–3258. https://doi.org/10.1021/acsami.0c21046

    Article  CAS  PubMed  Google Scholar 

  7. Sen N, Darekar M, Sirsat P, Singh KK, Mukhopadhyay S, Shirsath SR, Shenoy KT (2019) Recovery of uranium from lean streams by extraction and direct precipitation in microchannels. Sep and Purif Technol. https://doi.org/10.1016/j.seppur.2019.05.083

    Article  Google Scholar 

  8. Amphlett JTM, Choi S, Parry SA, Moon EM, Sharrad CA, Ogden MD (2020) Insights on uranium uptake mechanisms by ion exchange resins with chelating functionalities: Chelation vs. anion exchange. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123712

    Article  Google Scholar 

  9. Orrego P, Hernandez J, Reyes A (2019) Uranium and molybdenum recovery from copper leaching solutions using, ion exchange. Hydrometallurgy 184:116–122. https://doi.org/10.1016/j.hydromet.2018.12.021

    Article  CAS  Google Scholar 

  10. Jiang H, Luo J, Liu Z, Liu S, Li F, Zuo L, Ma J, Luo M (2022) Porous nanofiber membrane from phase separation electronspun for selectively recovering uranium from seawater. J Radioanal Nucl Chem 331:2523–2532. https://doi.org/10.1007/s10967-022-08302-4

    Article  CAS  Google Scholar 

  11. Shi S, Qian Y, Mei P, Yuan Y, Jia N, Dong M, Fan J, Guo Z, Wang N (2020) Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater. Nano Energy. https://doi.org/10.1016/j.nanoen.2020.104629

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Boulois HD, Joner EJ, Leyval C, Jakobsen I, Chen BD, Roos P, Thiry Y, Rufyikiri G, Delvaux B, Declerck S (2008) Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants. J Environ Radioact 99:775–784. https://doi.org/10.1016/j.jenvrad.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  13. Ren C-G, Kong C-C, Wang S-X, Xie Z-H (2019) Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere 217:773–779. https://doi.org/10.1016/j.chemosphere.2018.11.085

    Article  CAS  PubMed  Google Scholar 

  14. Liu P, Yu Q, Xue Y, Chen J, Ma F (2020) Adsorption performance of U(VI) by amidoxime-based activated carbon. J Radioanal Nucl Chem 324:813–822. https://doi.org/10.1007/s10967-020-07111-x

    Article  CAS  Google Scholar 

  15. Zhang F, Zhang H, Chen R, Liu Q, Liu J, Wang C, Sun Z, Wang J (2019) Mussel-inspired antifouling magnetic activated carbon for uranium recovery from simulated seawater. J Colloid Interface Sci 534:172–182. https://doi.org/10.1016/j.jcis.2018.09.023

    Article  CAS  PubMed  Google Scholar 

  16. Ahmad M, Ren J, Zhang Y, Kou H, M-u-d N, Zhang Q, Zhang B (2022) Simple and facile preparation of tunable chitosan tubular nanocomposite microspheres for fast uranium(VI) removal from seawater. Chem Eng J. https://doi.org/10.1016/j.cej.2021.130934

    Article  Google Scholar 

  17. Li Y, Dai Y, Tao Q, Gao Z, Xu L (2022) Ultrahigh efficient and selective adsorption of U(VI) with amino acids-modified magnetic chitosan biosorbents: Performance and mechanism. Int J Biol Macromol 214:54–66. https://doi.org/10.1016/j.ijbiomac.2022.06.061

    Article  CAS  PubMed  Google Scholar 

  18. Lahiri S, Mishra A, Mandal D, Bhardwaj RL, Gogate PR (2021) Sonochemical recovery of uranium from nanosilica-based sorbent and its biohybrid. Ultrasonics Sonochem. https://doi.org/10.1016/j.ultsonch.2021.105667

    Article  Google Scholar 

  19. Zhang F, Ma K-Q, Li Y, Ran Q, Yao C-Y, Yang C-T, Yu H-Z, Hu S, Peng S-M (2020) Selective separation of thorium from rare earths and uranium in acidic solutions by phosphorodiamidate-functionalized silica. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123717

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yuan Y, Zhao S, Wen J, Wang D, Gu X, Xu L, Wang X, Wang N (2019) Rational design of porous nanofiber adsorbent by blow-spinning with ultrahigh uranium recovery capacity from seawater. Adv Funct Mater. https://doi.org/10.1002/adfm.201805380

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yuan Y, Yu Q, Wen J, Li C, Guo Z, Wang X, Wang N (2019) Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber. Angewandte Chemie-International Edition 58:11785–11790. https://doi.org/10.1002/anie.201906191

    Article  CAS  PubMed  Google Scholar 

  22. Ma D, Wei J, Zhao Y, Chen Y, Tang S (2020) The removal of uranium using novel temperature sensitive urea-resin: and fast. Sci of the Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139399

    Article  Google Scholar 

  23. Tian W, Zhang H, Duan X, Sun H, Shao G, Wang S (2020) Porous carbons: structure-oriented design and versatile applications. Adv Funct Mater. https://doi.org/10.1002/adfm.201909265

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meng Y, Wang Y, Liu L, Ma F, Zhang C, Dong H (2022) MOF modified with copolymers containing carboxyl and amidoxime groups and high efficiency U (VI) extraction from seawater. Separ and Purif Technol. https://doi.org/10.1016/j.seppur.2022.120946

    Article  Google Scholar 

  25. Zhang Y, Ye T, Wang Y, Zhou L, Liu Z (2021) Adsorption of uranium(VI) from aqueous solution by phosphorylated luffa rattan activated carbon. J Radioanal Nucl Chem 327:1267–1275. https://doi.org/10.1007/s10967-020-07592-w

    Article  CAS  Google Scholar 

  26. Dhanya V, Arunraj B, Rajesh N (2022) Prospective application of phosphorylated carbon nanofibers with a high adsorption capacity for the sequestration of uranium from ground water. RSC Adv 12:13511–13522. https://doi.org/10.1039/d2ra02031a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gan J, Zhang L, Wang Q, Xin Q, Hu E, Lei Z, Wang H (2023) Synergistic action of multiple functional groups enhanced uranium extraction from seawater of porous phosphorylated chitosan/coal-based activated carbon composite sponge. Desalination. https://doi.org/10.1016/j.desal.2022.116154

    Article  Google Scholar 

  28. Kou Y, Zhang L, Liu B, Zhu L, Duan T (2020) Phosphonate modified MoS2 composite material for effective adsorption of uranium(VI) in aqueous solution. J Radioanal Nucl Chem 323:641–649. https://doi.org/10.1007/s10967-019-06970-3

    Article  CAS  Google Scholar 

  29. Liu L, Lin X, Li M, Chu H, Wang H, Xie Y, Du Z, Liu M, Liang L, Gong H, Zhou J, Li Z, Luo X (2021) Microwave-assisted hydrothermal synthesis of carbon doped with phosphorus for uranium(VI) adsorption. J Radioanal Nucl Chem 327:73–89. https://doi.org/10.1007/s10967-020-07453-6

    Article  CAS  Google Scholar 

  30. Wang Y, Yu C, Zeng D, Zhang Z, Cao X, Liu Y (2021) High-efficiency removal of U(VI) by mesoporous carbon functionalized with amino group. J Radioanal Nucl Chem 328:951–961. https://doi.org/10.1007/s10967-021-07747-3

    Article  CAS  Google Scholar 

  31. Yunyun B, Jiang C, Liu Y, Wang C, Liu J (2021) Investigation of the adsorption properties of U(VI) by sulfonic acid-functionalized carbon materials. J Radioanal Nucl Chem 330:225–235. https://doi.org/10.1007/s10967-021-07952-0

    Article  CAS  Google Scholar 

  32. Sen N, Singh KK, Mukhopadhyay S, Shenoy KT (2020) Continuous synthesis of tributyl phosphate in microreactor. Prog Nucl Energy. https://doi.org/10.1016/j.pnucene.2020.103402

    Article  Google Scholar 

  33. Guo X, Feng Y, Ma L, Gao D, Jing J, Yu J, Sun H, Gong H, Zhang Y (2017) Phosphoryl functionalized mesoporous silica for uranium adsorption. Appl Surf Sci 402:53–60. https://doi.org/10.1016/j.apsusc.2017.01.050

    Article  CAS  Google Scholar 

  34. Guo X, Feng Y, Ma L, Yu J, Jing J, Gao D, Khan AS, Gong H, Zhang Y (2018) Uranyl ion adsorption studies on synthesized phosphoryl functionalised MWCNTs: a mechanistic approach. J Radioanal Nucl Chem 316:397–409. https://doi.org/10.1007/s10967-018-5761-0

    Article  CAS  Google Scholar 

  35. Song Q, Ma L, Liu J, Bai C, Geng J, Wang H, Li B, Wang L, Li S (2012) Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J Colloid Interface Sci 386:291–299. https://doi.org/10.1016/j.jcis.2012.07.070

    Article  CAS  PubMed  Google Scholar 

  36. Chen Z, He X, Li Q, Yang H, Liu Y, Wu L, Liu Z, Hu B, Wang X (2022) Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction. J Environ Sci 122:1–13. https://doi.org/10.1016/j.jes.2021.10.003

    Article  CAS  Google Scholar 

  37. Liu X, Li J, Wang X, Chen C, Wang X (2015) High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution. J Nucl Mater 466:56–64. https://doi.org/10.1016/j.jnucmat.2015.07.027

    Article  CAS  Google Scholar 

  38. Liu Y, Zhao Z, Yuan D, Wang Y, Dai Y, Chew JW (2018) Fast and high amount of U(VI) uptake by functional magnetic carbon nanotubes with phosphate group. Ind Eng Chem Res 57:14551–14560. https://doi.org/10.1021/acs.iecr.8b03864

    Article  CAS  Google Scholar 

  39. Ma D, Hu S, Li Y, Xu Z (2020) Adsorption of uranium on phosphoric acid-activated peanut shells. Sep Sci Technol 55:1623–1635. https://doi.org/10.1080/01496395.2019.1606016

    Article  CAS  Google Scholar 

  40. Xin Q, Wang Q, Gan J, Lei Z, Hu E, Wang H, Wang H (2023) Enhanced performance in uranium extraction by the synergistic effect of functional groups on chitosan-based adsorbent. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2022.120270

    Article  Google Scholar 

  41. Zhang Z-b, Zhou Z-w, Cao X-h, Liu Y-h, Xiong G-x, Liang P (2014) Removal of uranium(VI) from aqueous solutions by new phosphorus-containing carbon spheres synthesized via one-step hydrothermal carbonization of glucose in the presence of phosphoric acid. J Radioanal Nucl Chem 299:1479–1487. https://doi.org/10.1007/s10967-013-2830-2

    Article  CAS  Google Scholar 

  42. Zou JZ, Niu Y, Tu WX, Zhang Q, Yao YC, Zeng SZ, Lan TB, Wu HL, Zeng XR (2019) Optimized synthesis of ultrahigh-surface-area and oxygen-doped carbon nanobelts for high cycle-stability lithium-sulfur batteries. J Electrochem Soc 166:A3464–A3473. https://doi.org/10.1149/2.1111914jes

    Article  CAS  Google Scholar 

  43. Joshi RG, Gupta DK, Amesh P, Parida PK, Ravindran TR (2021) Microgel-hydrogel composite photonic crystals to monitor and extract uranyl ions in aqueous solutions. Microporous and Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2021.111075

    Article  Google Scholar 

  44. Niazi A (2006) Spectrophotometric simultaneous determination of uranium and thorium using partial least squares regression and orthogonal signal correction. J Braz Chem Soc 17:1020–1026. https://doi.org/10.1590/s0103-50532006000500029

    Article  CAS  Google Scholar 

  45. Zhang C, Li X, Chen Z, Wen T, Huang S, Hayat T, Alsaedi A, Wang X (2018) Synthesis of ordered mesoporous carbonaceous materials and their highly efficient capture of uranium from solutions. Science China-Chem 61:281–293. https://doi.org/10.1007/s11426-017-9132-7

    Article  CAS  Google Scholar 

  46. Husnain SM, Kim HJ, Um W, Chang Y-Y, Chang Y-S (2017) Superparamagnetic adsorbent based on phosphonate grafted mesoporous carbon for uranium removal. Ind Eng Chem Res 56:9821–9830. https://doi.org/10.1021/acs.iecr.7b01737

    Article  CAS  Google Scholar 

  47. Dutta RK, Shaida MA, Singla K, Das D (2019) Highly efficient adsorptive removal of uranyl ions by a novel graphene oxide reduced by adenosine 5-monophosphate (RGO-AMP). J Mater Chem A 7:664–678. https://doi.org/10.1039/c8ta09746a

    Article  CAS  Google Scholar 

  48. Liu R, Wang H, Yue C, Zhang X, Wang M, Liu L (2022) Synthesis of molybdenum disulfide/graphene oxide composites for effective removal of U (VI) from aqueous solutions. J Radioanal Nucl Chem 331:3713–3722. https://doi.org/10.1007/s10967-022-08425-8

    Article  CAS  Google Scholar 

  49. El-Maghrabi HH, Younes AA, Salem AR, Rabie K, El-shereafy E-s (2019) Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): preparation, characterization and adsorption optimization. J Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2019.05.096

    Article  Google Scholar 

  50. Puziy AM, Poddubnaya OI, Gawdzik B, Tascon JMD (2020) Phosphorus-containing carbons: preparation, properties and utilization. Carbon 157:796–846. https://doi.org/10.1016/j.carbon.2019.10.018

    Article  CAS  Google Scholar 

  51. Park J, Bae J, Jin K, Park J (2019) Carboxylate-functionalized organic nanocrystals for high-capacity uranium sorbents. J Hazard Mater 371:243–252. https://doi.org/10.1016/j.jhazmat.2019.03.007

    Article  CAS  PubMed  Google Scholar 

  52. Maity S, Bajpai S, Dhar BB (2021) Selective U(VI) removal using phosphorous-doped graphitic carbon. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104690

    Article  Google Scholar 

  53. Yang P, Li S, Liu C, Shen C, Liu X (2021) Water-endurable intercalated graphene oxide adsorbent with highly efficient uranium capture from acidic wastewater. Sep and Purif Technol. https://doi.org/10.1016/j.seppur.2021.118364

    Article  Google Scholar 

  54. Amesh P, Suneesh AS, Venkatesan KA, Chandra M, Ravindranath NA (2020) High capacity amidic succinic acid functionalized mesoporous silica for the adsorption of uranium. Colloids and Surf a-Physicochem and Eng Aspects. https://doi.org/10.1016/j.colsurfa.2020.125053

    Article  Google Scholar 

  55. Guo D, Song X, Zhang L, Chen W, Chu D, Tan L (2020) Recovery of uranium (VI) from aqueous solutions by the polyethyleneimine-functionalized reduced graphene oxide/molybdenum disulfide composition aerogels. J Taiwan Inst Chem Eng 106:198–205. https://doi.org/10.1016/j.jtice.2019.09.029

    Article  CAS  Google Scholar 

  56. Liu L, Yang W, Gu D, Zhao X, Pan Q (2019) In situ preparation of Chitosan/ZIF-8 composite beads for highly efficient removal of U(VI). Front Chem. https://doi.org/10.3389/fchem.2019.00607

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ju P, Liu Q, Zhang H, Chen R, Liu J, Yu J, Liu P, Zhang M, Wang J (2019) Hyperbranched topological swollen-layer constructs of multi-active sites polyacrylonitrile (PAN) adsorbent for uranium(VI) extraction from seawater. Chem Eng J 374:1204–1213. https://doi.org/10.1016/j.cej.2019.05.222

    Article  CAS  Google Scholar 

  58. Ye T, Huang B, Wang Y, Zhou L, Liu Z (2020) Rapid removal of uranium(VI) using functionalized luffa rattan biochar from aqueous solution. Colloids and Surf a-Physicochem and Eng Aspects. https://doi.org/10.1016/j.colsurfa.2020.125480

    Article  Google Scholar 

  59. Xiao F, Cheng Y, Zhou P, Chen S, Wang X, He P, Nie X, Dong F (2021) Fabrication of novel carboxyl and amidoxime groups modified luffa fiber for highly efficient removal of uranium(VI) from uranium mine water. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105681

    Article  Google Scholar 

  60. Wang Y, Li Y, Zhang Y, Zhang Z, Li Y, Li W (2021) Nanocellulose aerogel for highly efficient adsorption of uranium (VI) from aqueous solution. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.118233

    Article  Google Scholar 

  61. Sun Y, Wei Y, Pei J, Nan H, Wang Y, Cao X, Liu Y (2021) Study on adsorption of U(VI) from MOF-derived phosphorylated porous carbons. J Solid State Chem. https://doi.org/10.1016/j.jssc.2020.121792

    Article  Google Scholar 

  62. Qin X, Yang W, Yang W, Ma Y, Li M, Chen C, Pan Q (2021) Covalent modification of ZIF-90 for uranium adsorption from seawater. Microporous and Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2021.111231

    Article  Google Scholar 

  63. Gong H, Lin X, Xie Y, Liu L, Zhou J, Liao H, Shang R, Luo X (2021) A novel self-crosslinked gel microspheres of Premna microphylla turcz leaves for the absorption of uranium. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.124151

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhuang S, Wang J (2020) Poly amidoxime functionalized carbon nanotube as an efficient adsorbent for removal of uranium from aqueous solution. J Mol Liquids. https://doi.org/10.1016/j.molliq.2020.114288

    Article  Google Scholar 

  65. Ahmed W, Mehmood S, Qaswar M, Ali S, Khan ZH, Ying H, Chen D-Y, Nunez-Delgado A (2021) Oxidized biochar obtained from rice straw as adsorbent to remove uranium (VI) from aqueous solutions. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105104

    Article  Google Scholar 

  66. Li N, Gao P, Chen H, Li F, Wang Z (2022) Amidoxime modified Fe3O(4)@TiO2 particles for antibacterial and efficient uranium extraction from seawater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.132137

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhao C, Liu J, Deng Y, Tian Y, Zhang G, Liao J, Yang J, Yang Y, Liu N, Sun Q (2019) Uranium(VI) adsorption from aqueous solutions by microorganism-graphene oxide composites via an immobilization approach. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.117624

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Innovation Training Program of China (202210555016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyue Wan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wan, Q. Adsorption of uranium (VI) in aqueous solutions by phosphorylated absorbent resin porous carbon. J Radioanal Nucl Chem 332, 4201–4211 (2023). https://doi.org/10.1007/s10967-023-09093-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09093-y

Keywords

Navigation