Skip to main content
Log in

Natural radionuclides and radiological hazard assessment of building materials in North Vietnam

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The activity concentrations of 226Ra, 232Th and 40K in four common types of building materials (carbonate, quartz, clay and granite) in North Vietnam were determined by HPGe gamma-ray spectrometry. The average activity of these radionuclides were 15, 17 and 213 Bq kg−1 for carbonate; 43, 35 and 462 Bq kg−1 for quartz; 80, 99 and 824 Bq kg−1 for clay; and 98, 198 and 1440 Bq kg−1 for granite. The results showed significant differences in the activities of these radionuclides in different building materials as follows: ACarbonate < AQuartz < AClay < AGranite. The radioactivity of building materials originated from granite and clay are high, while those observed for ones derived from carbonate and quartz are low. Regarding radiation hazard indices, granite exceeded the recommended value, while carbonate fell below this maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alnour I et al (2012) Natural radioactivity measurements in the granite rock of quarry sites, Johor. Malaysia Radiat Phys and Chem 81(12):1842–1847. https://doi.org/10.1016/j.radphyschem.2012.08.005

    Article  CAS  Google Scholar 

  2. Aydarous AS, Zeghib S, Al-Dughmah M (2010) Measurements of natural radioactivity and the resulting radiation doses from commercial granites. Radiat Prot Dosimetry 142(2–4):363–368. https://doi.org/10.1093/rpd/ncq216

    Article  CAS  PubMed  Google Scholar 

  3. El-Shershaby A (2002) Study of radioactivity levels in granite of Gable Gattar II in the north eastern desert of Egypt. Appl Radiat Isot 57(1):131–135. https://doi.org/10.1016/S0969-8043(02)00067-2

    Article  CAS  PubMed  Google Scholar 

  4. Hewamanna R et al (2001) Natural radioactivity and gamma dose from Sri Lankan clay bricks used in building construction. Appl Radiat Isot 54(2):365–369. https://doi.org/10.1016/S0969-8043(00)00107-X

    Article  CAS  PubMed  Google Scholar 

  5. Ibrahiem N et al (1993) Measurement of radioactivity levels in soil in the Nile Delta and Middle Egypt. Health Phys 64(6):620–627

    Article  CAS  PubMed  Google Scholar 

  6. Riekstina D et al (2015) Natural radioactivity in clay and building materials used in Latvia. Latv J Phys Tech Sci 52(3):58–66. https://doi.org/10.1515/lpts-2015-0018

    Article  Google Scholar 

  7. Shahrokhi A et al (2021) A brief radiological survey and associated occupational exposure to radiation in an open pit slate mine in Kashan. Iran J Radioanalyt and Nuclear Chem 329(1):141–148. https://doi.org/10.1007/s10967-021-07778-w

    Article  CAS  Google Scholar 

  8. Steck, D. Pre-and post-market measurements of gamma radiation and radon emanation from large sample of decorative granites. In Proceedings of the American Association of Radon Scientists and Technologists 2009 International Symposium, St. Louis, USA. 2009.

  9. Bangunan B (2009) Radiological studies of naturally occurring radioactive materials in some Malaysia’s sand used in building construction. Malaysian J Anal Sci 13(1):29–35

    Google Scholar 

  10. Duong NT et al (2021) Natural radionuclides and assessment of radiological hazards in MuongHum Lao Cai Vietnam. Chemosphere 270:128671. https://doi.org/10.1016/j.chemosphere.2020.128671

    Article  CAS  PubMed  Google Scholar 

  11. Omar, M., Natural radioactivity of building materials used in Malaysia. 2002.

  12. Van Hao D et al (2019) High-level natural radionuclides from the Mandena deposit, South Madagascar. J Radioanal Nucl Chem 319:1331–1338. https://doi.org/10.1007/s10967-018-6378-z

    Article  CAS  Google Scholar 

  13. Van HD et al (2020) Fort-Dauphin beach sands, south Madagascar: natural radionuclides and mineralogical studies. Sci Earth 42(2):118–129. https://doi.org/10.15625/0866-7187/42/2/14951

    Article  Google Scholar 

  14. Imani M et al (2021) Natural radioactivity and radiological risks of common building materials used in Semnan Province dwellings. Iran Environ Sci and Pollution Res 28:41492–41503. https://doi.org/10.1007/s11356-021-13469-6

    Article  CAS  Google Scholar 

  15. Kardos R et al (2015) Radionuclide content of NORM by-products originating from the coal-fired power plant in Oroszlány (Hungary). Radiat Prot Dosimetry 167(1–3):266–269. https://doi.org/10.1093/rpd/ncv259

    Article  CAS  PubMed  Google Scholar 

  16. Kovács T et al (2017) Radon exhalation study of manganese clay residue and usability in brick production. J Environ Radioact 168:15–20

    Article  PubMed  Google Scholar 

  17. Lu X, Chao S, Yang F (2014) Determination of natural radioactivity and associated radiation hazard in building materials used in Weinan. China Radiation Phys and Chem 99:62–67

    Article  CAS  Google Scholar 

  18. Salih I et al (2014) Radiation exposure of workers in storage areas for building materials. J Taibah Univ for Sci 8(4):394–400

    Article  Google Scholar 

  19. Shahrokhi A et al (2020) Radioactivity of building materials in Mahallat, Iran–an area exposed to a high level of natural background radiation–attenuation of external radiation doses. Mater Constr 70(340):e233–e233. https://doi.org/10.3989/mc.2020.03820

    Article  CAS  Google Scholar 

  20. Matiullah NA, Hussein A (1998) Natural radioactivity in Jordanian soil and building materials and the associated radiation hazards. J Environ Radioact 39(1):9–22. https://doi.org/10.1016/S0265-931X(97)00046-5

    Article  Google Scholar 

  21. Rahman S, Rafique M, Jabbar A (2013) Radiological hazards due to naturally occurring radionuclides in the selected building materials used for the construction of dwellings in four districts of the Punjab province. Pakistan Radiation protection dosimetry 153(3):352–360. https://doi.org/10.1093/rpd/ncs109

    Article  CAS  PubMed  Google Scholar 

  22. Sharaf J, Hamideen M (2013) Measurement of natural radioactivity in Jordanian building materials and their contribution to the public indoor gamma dose rate. Appl Radiat Isot 80:61–66. https://doi.org/10.1093/rpd/ncs109

    Article  CAS  PubMed  Google Scholar 

  23. AC, T., Nature of Earth Materials. 1994.

  24. Ghosh D et al (2008) Assessment of alpha activity of building materials commonly used in West Bengal. India J Environ Radioact 99(2):316–321. https://doi.org/10.1016/j.jenvrad.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  25. Iqbal M, Tufail M, Mirza SM (2000) Measurement of natural radioactivity in marble found in Pakistan using a NaI (Tl) gamma-ray spectrometer. J Environ Radioact 51(2):255–265. https://doi.org/10.1016/S0265-931X(00)00077-1

    Article  CAS  Google Scholar 

  26. Turhan Ş (2008) Assessment of the natural radioactivity and radiological hazards in Turkish cement and its raw materials. J Environ Radioact 99(2):404–414. https://doi.org/10.1016/j.jenvrad.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  27. Abd El-Mageed AI et al (2014) Natural radioactivity and radiological hazards of some building materials of Aden. Yemen J Geochem Exploration 140:41–45. https://doi.org/10.1016/j.gexplo.2014.01.015

    Article  CAS  Google Scholar 

  28. Ngachin M et al (2007) Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials. Radiat Meas 42(1):61–67. https://doi.org/10.1016/j.radmeas.2006.07.007

    Article  CAS  Google Scholar 

  29. Kovler K (2009) Radiological constraints of using building materials and industrial by-products in construction. Constr Build Mater 23(1):246–253. https://doi.org/10.1016/j.conbuildmat.2007.12.010

    Article  Google Scholar 

  30. Stoulos S, Manolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radioact 69(3):225–240. https://doi.org/10.1016/S0265-931X(03)00081-X

    Article  CAS  PubMed  Google Scholar 

  31. Ali S et al (1996) Gamma-ray activity and dose rate of brick samples from some areas of North West Frontier Province (NWFP). Pakistan Sci Total Environ 187(3):247–252. https://doi.org/10.1016/0048-9697(96)05109-1

    Article  CAS  PubMed  Google Scholar 

  32. Bala P, Mehra R, Ramola R (2014) Distribution of natural radioactivity in soil samples and radiological hazards in building material of Una, Himachal Pradesh. J Geochem Explor 142:11–15. https://doi.org/10.1016/j.gexplo.2014.02.010

    Article  CAS  Google Scholar 

  33. Chen C-J, Weng P-S, Chu T-C (1993) Radon exhalation rate from various building materials. Health Phys 64(6):613–619

    Article  CAS  PubMed  Google Scholar 

  34. Kayakökü H, Karatepe Ş, Doğru M (2016) Measurements of radioactivity and dose assessments in some building materials in Bitlis. Turkey Appl Radiation and Isotopes 115:172–179. https://doi.org/10.1016/j.apradiso.2016.06.020

    Article  CAS  Google Scholar 

  35. Kovler K et al (2002) Natural radionuclides in building materials available in Israel. Build Environ 37(5):531–537. https://doi.org/10.1016/S0360-1323(01)00048-8

    Article  Google Scholar 

  36. La Verde G et al (2020) Radioactivity content in natural stones used as building materials in Puglia region analysed by high resolution gamma-ray spectroscopy: preliminary results. Construction and Building Mater 239:117668. https://doi.org/10.1016/j.conbuildmat.2019.117668

    Article  CAS  Google Scholar 

  37. Lu X, Yang G, Ren C (2012) Natural radioactivity and radiological hazards of building materials in Xianyang. China Radiat Phys and chem 81(7):780–784. https://doi.org/10.1016/j.radphyschem.2012.02.043

    Article  CAS  Google Scholar 

  38. Raghu Y et al (2017) Assessment of natural radioactivity and radiological hazards in building materials used in the Tiruvannamalai District, Tamilnadu, India, using a statistical approach. J Taibah Univ for Sci 11(4):523–533. https://doi.org/10.1016/j.jtusci.2015.08.004

    Article  Google Scholar 

  39. Ravisankar R et al (2012) Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry. Appl Radiat Isot 70(4):699–704. https://doi.org/10.1016/j.apradiso.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  40. Trevisi R et al (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J Environ Radioact 105:11–20. https://doi.org/10.1016/j.jenvrad.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  41. Turhan Ş et al (2007) Natural radioactivity measurement in pumice samples used raw materials in Turkey. Appl Radiat Isot 65(3):350–354. https://doi.org/10.1016/j.apradiso.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  42. Xinwei L (2005) Natural radioactivity in some building materials of Xi’an. China Radiat Measurements 40(1):94–97. https://doi.org/10.1016/j.radmeas.2005.01.003

    Article  CAS  Google Scholar 

  43. CD, E., Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/ Euratom, 96/29/Euratom, 97/43/Euratom. In, 2013.

  44. Chau ND et al (2017) General characteristics of rare earth and radioactive elements in Dong Pao deposit, Lai Chau. Vietnam Vietnam J Earth Sci 39(1):14–26

    Google Scholar 

  45. Nguyen DC et al (2016) Natural radioactivity at the Sin Quyen iron-oxide-copper-gold deposit in north Vietnam. Acta Geophys 64:2305–2321. https://doi.org/10.1515/acgeo-2016-0103

    Article  Google Scholar 

  46. Kumar A et al (2008) Impact of tropical ecosystem on the migrational behavior of K-40, Cs-137, Th-232 U-238 in perennial plants. Water Air Soil Pollut 192:293–302. https://doi.org/10.1007/s11270-008-9656-5

    Article  CAS  Google Scholar 

  47. Ebaid Y, Bakr W (2012) Investigating the effect of using granite and marble as a building material on the radiation exposure of humans. Radiat Prot Dosimetry 151(3):556–563. https://doi.org/10.1093/rpd/ncs044

    Article  CAS  PubMed  Google Scholar 

  48. Canbaz B et al (2010) Natural radioactivity (226Ra, 232Th and 40K) and assessment of radiological hazards in the Kestanbol granitoid. Turkey Radiation Protection Dosimetry 141(2):192–198. https://doi.org/10.1093/rpd/ncq165

    Article  CAS  PubMed  Google Scholar 

  49. El-Taher A, Uosif M, Orabi A (2007) Natural radioactivity levels and radiation hazard indices in granite from Aswan to Wadi El-Allaqi southeastern desert. Egypt Radiat Protection Dosimetry 124(2):148–154. https://doi.org/10.1093/rpd/ncm211

    Article  CAS  Google Scholar 

  50. Fowler, E. and E. Essington, Sampling of soil transuranic nuclides; A review in transuranics in natural environment. US DOE, Rep. No. NVO-187, 1976.

  51. Koster H et al (1988) Linear regression models for the natural radioactivity (238U, 232Th and 40K) in Dutch soils: a key to anomalies. Radiat Prot Dosimetry 24(1–4):63–68. https://doi.org/10.1093/oxfordjournals.rpd.a080243

    Article  Google Scholar 

  52. Krmar M et al (2009) Correlations of natural radionuclides in sediment from Danube. J Geochem Explor 100(1):20–24. https://doi.org/10.1016/j.gexplo.2008.03.002

    Article  CAS  Google Scholar 

  53. Taylor MJ et al (2002) Relationships between soil properties and high-resolution radiometrics, central eastern Wheatbelt. Western Australia Exploration geophysics 33(2):95–102. https://doi.org/10.1071/EG02095

    Article  Google Scholar 

  54. Bell, K.G., Uranium in carbonate rocks. 1963.

  55. Schön, J., Physical properties of rocks: A workbook. Vol. 8. 2011: Elsevier.

  56. UNSCEAR, Sources and Effects of Ionizing Radiation. 2000.

  57. Amrani D, Tahtat M (2001) Natural radioactivity in Algerian building materials. Appl Radiat Isot 54(4):687–689

    Article  CAS  PubMed  Google Scholar 

  58. Baykara O, Karatepe Ş, Doğru M (2011) Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig. Turkey Radiation Measur 46(1):153–158

    Article  CAS  Google Scholar 

  59. Beretka J, Mathew P (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48(1):87–95

    Article  CAS  PubMed  Google Scholar 

  60. El-Tahawy M, Higgy R (1995) Natural radioactivity in different types of bricks fabricated and used in the Cairo region. Appl Radiat Isot 46(12):1401–1406

    Article  CAS  Google Scholar 

  61. Khan K et al (2002) Norm and associated radiation hazards in bricks fabricated in various localities of the North-West Frontier Province (Pakistan). J Environ Radioact 58(1):59–66

    Article  CAS  PubMed  Google Scholar 

  62. Kumar A et al (2003) Natural activities of 238U, 232Th and 40K in some Indian building materials. Radiat Meas 36(1–6):465–469

    Article  CAS  Google Scholar 

  63. Trevisi R et al (2018) Updated database on natural radioactivity in building materials in Europe. J Environ Radioact 187:90–105

    Article  CAS  PubMed  Google Scholar 

  64. Tufail M, Hamid T (2007) Natural radioactivity hazards of building bricks fabricated from saline soil of two districts of Pakistan. J Radiol Prot 27(4):481

    Article  CAS  PubMed  Google Scholar 

  65. Ziqiang P, Yin Y, Mingqiang G (1988) Natural radiation and radioactivity in China. Radiat Prot Dosimetry 24(1–4):29–38

    Article  Google Scholar 

  66. Sharaf M et al (1999) Natural radioactivity and radon exhalation rates in building materials used in Egypt. Radiat Meas 31(1–6):491–495

    Article  CAS  Google Scholar 

  67. Yu K et al (1992) The assessment of the natural radiation dose committed to the Hong Kong people. J Environ Radioact 17(1):31–48. https://doi.org/10.1016/0265-931X(92)90033-P

    Article  CAS  Google Scholar 

  68. EC, Radiological protection principles concerning the natural radioactivity of building materials. vol Radiation Protection, 112. 1999.

  69. UNSCEAR, Sources and effects of ionizing radiation, united nations scientific committee on the effects of atomic radiation (UNSCEAR) 1993 report: report to the general assembly, with scientific annexes. United Nations. 1993.

  70. ICRP, Limits for intake of radionuclides by workers. ICRP Publication 65, Ann ICRP., vol. 23. Pergamon Press, Oxford (No. 2). 1993.

  71. El-Taher A et al (2010) Assessment of natural radioactivity levels and radiation hazards due to cement industry. Appl Radiat Isot 68(1):169–174

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Hao Duong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui Van, L., Kim Tien, T., Bui Minh, H. et al. Natural radionuclides and radiological hazard assessment of building materials in North Vietnam. J Radioanal Nucl Chem 333, 2577–2586 (2024). https://doi.org/10.1007/s10967-023-09088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09088-9

Keywords

Navigation