Skip to main content
Log in

Analysis of the porosity of ZIF-8 and ZIF-8@CNF membranes using positron annihilation lifetime spectroscopy (PALS)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Zeolite imidazole framework (ZIF) are a family of metal-organic frameworks with nano-sized pores that can be used as membranes for highly selective gas separation. Currently, efforts are being made to control the pore size of ZIF for gas separation based on their kinetic diameters. In this study, the effects of a surfactant and cellulose nanofiber (CNF) as a substrate on the pore and crystal sizes were investigated. We measure pore size using positron annihilation lifetime spectroscopy. Results showed that the pore size decreases as the crystal size decreases. The pore size of the ZIF-8 nanoparticles grown on the CNF is 0.45 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang S, McGuirk CM, d’Aquino A, Mason JA, Mirkin CA (2018) Metal–organic framework nanoparticles. Adv Mater 30(37):1800202

    Article  Google Scholar 

  2. Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks, vol 112. ed: ACS Publications, pp 673–674

  3. Zhu Q-L, Xu Q (2014) Metal–organic framework composites. Chem Soc Rev 43(16):5468–5512

    Article  CAS  PubMed  Google Scholar 

  4. Czaja AU, Trukhan N, Müller U (2009) Industrial applications of metal–organic frameworks. Chem Soc Rev 38(5):1284–1293

    Article  CAS  PubMed  Google Scholar 

  5. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444

    Article  PubMed  Google Scholar 

  6. Kuppler RJ et al (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253:23–24

    Article  Google Scholar 

  7. Li S, Huo F (2015) Metal–organic framework composites: from fundamentals to applications. Nanoscale 7(17):7482–7501

    Article  CAS  PubMed  Google Scholar 

  8. Rabani I et al (2023) Structural engineering of ruthenium decorated zeolitic imidazole framework nanocomposite for hydrogen evolution reactions and supercapacitors. J Energy Storage 62:106885

    Article  Google Scholar 

  9. Rabani I, Tahir MS, Afzal F, Truong HB, Kim M, Seo Y-S (2023) High-efficient mineralization performance of photocatalysis activity towards organic pollutants over ruthenium nanoparticles stabilized by metal organic framework. J Environ Chem Eng 11(1):109235

    Article  CAS  Google Scholar 

  10. Hu Z, Zhang H, Zhang X-F, Jia M, Yao J (2022) Polyethylenimine grafted ZIF-8@ cellulose acetate membrane for enhanced gas separation. J Membr Sci 662:120996

    Article  CAS  Google Scholar 

  11. Kim D, Kim DW, Hong WG, Coskun A (2016) Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity. J Mater Chem A 4(20):7710–7717

    Article  CAS  Google Scholar 

  12. Lai Z (2018) Development of ZIF-8 membranes: opportunities and challenges for commercial applications. Curr Opin Chem Eng 20:78–85

    Article  Google Scholar 

  13. Sutrisna PD, Prasetya N, Himma NF, Wenten IG (2020) A mini-review and recent outlooks on the synthesis and applications of zeolite imidazolate framework‐8 (ZIF‐8) membranes on polymeric substrate. J Chem Technol Biotechnol 95(11):2767–2774

    Article  CAS  Google Scholar 

  14. Ania CO et al (2012) Understanding gas-induced structural deformation of ZIF-8. J Phys Chem Lett 3(9):1159–1164

    Article  CAS  PubMed  Google Scholar 

  15. Paul A, Banga IK, Muthukumar S, Prasad S (2022) Engineering the ZIF-8 pore for electrochemical sensor applications a mini review. ACS omega 7(31):26993–27003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharma S, Utpalla P, Bahadur J, Das A, Prakash J, Pujari P (2020) Crystal size-dependent pore architecture and surface chemical characteristics of desolvated ZIF-8 investigated using positron annihilation spectroscopy. J Phys Chem C 124(46):25291–25298

    Article  CAS  Google Scholar 

  17. Wei Q, Lucero JM, Crawford JM, Way JD, Wolden CA, Carreon MA (2021) Ammonia separation from N2 and H2 over LTA zeolitic imidazolate framework membranes. J Membr Sci 623:119078

    Article  CAS  Google Scholar 

  18. Casco ME et al (2016) Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering. Chem Commun 52(18):3639–3642

    Article  CAS  Google Scholar 

  19. Ueda T, Yamatani T, Okumura M (2019) Dynamic gate opening of ZIF-8 for bulky molecule adsorption as studied by vapor adsorption measurements and computational approach. J Phys Chem C 123(45):27542–27553

    Article  CAS  Google Scholar 

  20. Zheng B, Pan Y, Lai Z, Huang K-W (2013) Molecular dynamics simulations on gate opening in ZIF-8: identification of factors for ethane and propane separation. Langmuir 29(28):8865–8872

    Article  CAS  PubMed  Google Scholar 

  21. Hobday CL et al (2018) Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling. Nat Commun 9(1):1429

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rabani I et al (2022) Titanium dioxide incorporated in cellulose nanofibers with enhanced UV blocking performance by eliminating ROS generation. RSC Adv 12(52):33653–33665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rabani I, Park Y-J, Lee J-W, Tahir MS, Kumar A, Seo Y-S (2022) Ultra-thin flexible paper of BNNT–CNF/ZnO ternary nanostructure for enhanced solid-state supercapacitor and piezoelectric response. J Mater Chem A 10(29):15580–15594

    Article  CAS  Google Scholar 

  24. Rabani I, Yoo J, Kim HS, Hussain S, Karuppasamy K, Seo YS (2021) Highly dispersive Co 3 O 4 nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor. Nanoscale 13(1):355–370

    Article  CAS  PubMed  Google Scholar 

  25. Rabani I, Yoo J, Bathula C, Hussain S, Seo Y-S (2021) The role of uniformly distributed ZnO nanoparticles on cellulose nanofibers in flexible solid state symmetric supercapacitors. J Mater Chem A 9(19):11580–11594

    Article  CAS  Google Scholar 

  26. Hou Q, Wu Y, Zhou S, Wei Y, Caro J, Wang H (2019) Ultra-tuning of the aperture size in stiffened ZIF‐8_Cm frameworks with mixed‐linker strategy for enhanced CO2/CH4 separation. Angew Chem Int Ed 58(1):327–331

    Article  CAS  Google Scholar 

  27. Sharma S, Sudarshan K, Yadav A, Jha S, Bhattacharyya D, Pujari P (2019) Investigation of compression-induced deformations in local structure and pore architecture of ZIF-8 using FTIR, X-ray absorption, and positron annihilation spectroscopy. J Phys Chem C 123(36):22273–22280

    Article  CAS  Google Scholar 

  28. Utpalla P, Sharma S, Mor J, Prakash J, Bahadur J, Pujari P (2021) Fine tuning of pore architecture and morphology of stiffened zeolitic imidazolate frameworks synthesized using fast current driven method and mixed ligand strategy. Microporous Mesoporous Mater 327:111409

    Article  CAS  Google Scholar 

  29. Shi GM, Chen H, Jean Y, Chung TS (2013) Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation. Polymer 54(2):774–783

    Article  CAS  Google Scholar 

  30. Mor J et al (2022) Pore architecture evolution and OER catalytic activity of hollow Co/Zn zeolitic imidazolate frameworks. Microporous Mesoporous Mater 335:111814

    Article  CAS  Google Scholar 

  31. Kirkegaard P, Olsen JV, Eldrup MM (2017) PALSfit3: a software package for analysing positron lifetime spectra

  32. Tuan DD, Lin K-YA (2018) Ruthenium supported on ZIF-67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride. Chem Eng J 351:48–55

    Article  CAS  Google Scholar 

  33. Zhang H, Zhao M, Yang Y, Lin Y (2019) Hydrolysis and condensation of ZIF-8 in water. Microporous Mesoporous Mater 288:109568

    Article  CAS  Google Scholar 

  34. Kida K, Okita M, Fujita K, Tanaka S, Miyake Y (2013) Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 15(9):1794–1801

    Article  CAS  Google Scholar 

  35. Zheng G et al (2017) Shape control in ZIF-8 nanocrystals and metal nanoparticles@ ZIF-8 heterostructures. Nanoscale 9(43):16645–16651

    Article  CAS  PubMed  Google Scholar 

  36. Neerinck D, Vink T (1996) Depth profiling of thin ITO films by grazing incidence X-ray diffraction. Thin Solid Films 278:1–2

    Article  Google Scholar 

  37. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Nat Academy  Sci 103(27):10186–10191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP; 20212050100010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaegi Lee or Young Soo Seo.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, M.S., Lee, JW., Rabani, I. et al. Analysis of the porosity of ZIF-8 and ZIF-8@CNF membranes using positron annihilation lifetime spectroscopy (PALS). J Radioanal Nucl Chem 332, 3967–3975 (2023). https://doi.org/10.1007/s10967-023-09078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09078-x

Keywords

Navigation