Skip to main content
Log in

Rapid immobilization of Cs+ using Cs-containing ceramics obtained by hydrothermal-microwave treatment

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Kaolin was utilized as a raw material for geopolymers with various Si/Al ratios, and a hydrothermal-microwave treatment was proposed to obtain Cs-containing ceramics to immobilize 137Cs. The results show that with Si/Al from 1/1 to 3/1, the hydrothermal treatment will tend to produce CsAlSiO4, pollucite (CsAlSi2O6) and pollucite solid solutions, respectively. Following the hydrothermal reaction, a rapid microwave process (30 min) enhances the loose microstructure of hydrothermal products, and higher microwave temperatures promote pollucite crystallization. Cs-containing ceramics with high Cs content (31%) and low leaching rate (9.7 × 10−4 g m−2 d−1) are obtained at 800 °C with Si/Al ratio of 2/1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Buesseler K, Dai M, Aoyama M, Benitez-Nelson C, Charmasson S, Higley K, Maderich V, Masque P, Morris PJ, Oughton D, Smith JN, Annual R (2017) Fukushima Daiichi-derived radionuclides in the ocean: transport, fate, and impacts. Annu Rev Mar Sci 9:173–203

    Google Scholar 

  2. Unterweger MP (2002) Half-life measurements at the National Institute of Standards and Technology. Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture. Ind Med 56:125–130

    CAS  Google Scholar 

  3. Kuenzel C, Cisneros JF, Neville TP, Vandeperre LJ, Simons SJR, Bensted J, Cheeseman CR (2015) Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin. J Nucl Mater 466:94–99

    CAS  Google Scholar 

  4. Wu J, Zhou K, Dai M (2013) Impacts of the Fukushima nuclear accident on the China Seas: evaluation based on anthropogenic radionuclide Cs-137. Chin Sci Bull 58:552–558

    CAS  Google Scholar 

  5. He P, Jia D (2013) Low-temperature sintered pollucite ceramic from geopolymer precursor using synthetic metakaolin. J Mater Sci 48:1812–1818

    CAS  Google Scholar 

  6. Grote R, Zhao M, Shuller-Nickles L, Amoroso J, Gong W, Lilova K, Navrotsky A, Tang M, Brinkman KS (2019) Compositional control of tunnel features in hollandite-based ceramics: structure and stability of (Ba,Cs)(1.33)(Zn,Ti)(8)O-16. J Nucl Mate 54:1112–1125

    CAS  Google Scholar 

  7. Kumar SP, Buvaneswari G (2013) Synthesis of apatite phosphates containing Cs+, Sr2+ and RE3+ ions and chemical durability studies. Mater Res Bull 48:324–332

    CAS  Google Scholar 

  8. Strachan D, Schulz W (1977) Characterization of pollucite as a material for the long term storage of cesium-137. Atlantic Richfield Hanford Co, Richland, WA

    Google Scholar 

  9. Gallagher SA, McCarthy GJ (1981) Preparation and X-ray characterization of pollucite (CsAlSi2O6). J Inorg Nucl Chem 43:1773–1777

    CAS  Google Scholar 

  10. Shichalin O, Papynov E, Nepomnyushchaya V, Ivanets A, Belov A, Dran’kov A, Yarusova S, Buravlev IY, Tarabanova A, Fedorets A (2022) Hydrothermal synthesis and spark plasma sintering of NaY zeolite as solid-state matrices for cesium-137 immobilization. J Eur Ceram Soc 42:3004–3014

    CAS  Google Scholar 

  11. Yuan J, He P, Liang X, Jia D, Jia L, Cai D, Yang Z, Duan X, Wang S, Zhou Y (2018) Thermal evolution of lithium ion substituted cesium-based geopolymer under high temperature treatment, part I: effects of holding temperature. Ceram Int 44:10047–10054

    CAS  Google Scholar 

  12. Liu C, Guo L, Tong XJJoR, Chemistry N (2021) Factors affecting the hydrothermal synthesis and durability of pollucite: towards the practical radioactive cs immobilization. J Radioanal Nucl Chem 329:621–631

    CAS  Google Scholar 

  13. Chen S, Zhou Z-W, Sun X-WJJoR, Chemistry N (2021) Immobilization of simulated 137 CsCl using metakaolin based geopolymers obtained by hybrid hydrothermal-sintering processes. J Radioanal Nucl Chem 330:1285–1298

    CAS  Google Scholar 

  14. Liu J, Fan J, Zhang Y, Miao J, Cheng M, Yao A, Jing Z (2021) Hydrothermal conversion of analcime-pollucite solid solution from soil for immobilization of cs in situand its characterization. Mater Res Express 8:095512

    Google Scholar 

  15. Fan J, Jing Z, Zhang Y, Miao J, Chen Y, Jin F (2016) Mild hydrothermal synthesis of pollucite from soil for immobilization of cs in situ and its characterization. Chem Eng J 304:344–350

    CAS  Google Scholar 

  16. Chen Y, Jing Z, Cai K, Li J (2018) Hydrothermal conversion of Cs-polluted soil into pollucite for cs immobilization. Chem Eng J 336:503–509

    CAS  Google Scholar 

  17. Jing Z, Hao W, He X, Fan J, Zhang Y, Miao J, Jin F (2016) A novel hydrothermal method to convert incineration ash into pollucite for the immobilization of a simulant radioactive cesium. J Hazard Mater 306:220–229

    CAS  PubMed  Google Scholar 

  18. Jing Z, Yuan Y, Hao W, Miao J (2018) Synthesis of pollucite with Cs-polluted incineration ash mixed with soil for immobilization of radioactive cs. J Nucl Mater 510:141–148

    CAS  Google Scholar 

  19. Wang J, Wang J, Zhang Y, Yue C, Li Y, Wu X (2016) Properties of alkali-activated slag-fly ash-metakaolin hydroceramics for immobilizing of simulated sodium-bearing waste. Nuc Energ 93:12–17

    CAS  Google Scholar 

  20. Tang Z, Liu Y, Shi K, Xie Y, Yu S, Li J, Chen M, Zhu A, Zhang Q (2022) Low-temperature microwave solidification of soil with radioactive tailings for sustainable applications. Sustain Mater Technol 31:e00392

    CAS  Google Scholar 

  21. Croquesel J, Carry CP, Chaix J-M, Bouvard D, Saunier S (2018) Direct microwave sintering of alumina in a single mode cavity: Magnesium doping effects. J Eur Ceram Soc 38:1841–1845

    CAS  Google Scholar 

  22. Wei G, Shi M, Xu C, Shu X, Luo F, Chen S, Wang L, Xie Y, Lu X (2021) Mechanical and leaching properties of neodymium-contaminated soil glass-ceramics. J Am Ceram Soc 104:2521–2529

    CAS  Google Scholar 

  23. Liu C, Guo L, Tong X (2021) Factors affecting the hydrothermal synthesis and durability of pollucite: towards the practical radioactive cs immobilization. J Radioanal Nucl Chem 329:621–631

    CAS  Google Scholar 

  24. Jing Z, Li J, Hao W, Miao J (2019) Hydrothermal synthesis of pollucite with soil and incineration ash for cs immobilization and its immobilizing mechanism and leaching property. J Radioanal Nucl Chem 319:1083–1091

    CAS  Google Scholar 

  25. Jing Z, Cai K, Li Y, Fan J, Zhang Y, Miao J, Chen Y, Jin F (2017) Hydrothermal synthesis of pollucite, analcime and their solid solutions and analysis of their properties. J Nucl Mater 488:63–69

    CAS  Google Scholar 

  26. Xiang Y, Li J, Hou L, Lu Z (2021) Rapid transformation from Cs-geopolymers to Cs-defined ceramics by microwave sintering. Ceram Int 47:33089–33097

    CAS  Google Scholar 

  27. Fu S, He P, Wang M, Cui J, Wang M, Duan X, Yang Z, Jia D, Zhou Y (2020) Hydrothermal synthesis of pollucite from metakaolin-based geopolymer for hazardous wastes storage. J Clean Prod 248:119240

    CAS  Google Scholar 

  28. Jantzen CM, Bibler NE (2005) The product consistency test (ASTM C1285) for waste form durability testing. In: Environmental issues and waste management technologies in the ceramic and nuclear industries XI: proceedings of the 107th annual meeting of the American ceramic society, Baltimore, Maryland, USA 2012. Wiley, p 141

  29. Liu J, Wang F, Liao Q, Zhu H, Liu D, Zhu Y (2019) Synthesis and characterization of phosphate-based glass-ceramics for nuclear waste immobilization: structure, thermal behavior, and chemical stability. J Nucl Mate 513:251–259

    CAS  Google Scholar 

  30. Komarneni S, White WBJN, Management CW (1982) Alteration of CsAlSiO4 in hydrothermal fluids. Nucl Chem Waste Manag 3:169–172

    CAS  Google Scholar 

  31. BEGER RM (1969) The crystal structure and chemical composition of pollucite. Z Krist-Cryst Mater 129:280–302

    Google Scholar 

  32. Presser V, Klouzkova A, Mrazova M, Kohoutkova M, Berthold C (2008) Micro-raman spectroscopy on analcime and pollucite in comparison to X-ray diffraction. J Raman Spectrosc 39:587–592

    CAS  Google Scholar 

  33. He P, Wang M, Fu S, Jia D, Yan S, Yuan J, Xu J, Wang P, Zhou YJCi (2016) Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram Int 42:14416–14422

    CAS  Google Scholar 

  34. Li J, Duan J, Hou L, Lu Z (2018) Effect of Cs content on K1-xCsxAlSi2O6 ceramic solidification forms. J Nucl Mater 499:144–154

    CAS  Google Scholar 

  35. Jing Z, Yuan Y, Hao W, Miao JJJoNM (2018) Synthesis of pollucite with Cs-polluted incineration ash mixed with soil for immobilization of radioactive cs. J Nucl Mater 510:141–148

    CAS  Google Scholar 

  36. Kitchen HJ, Vallance SK, Kennedy JL, Tapia-Ruiz N, Carassiti L, Harrison A, Whittaker AG, Drysdale TD, Kingman SW, Gregory DH (2014) Modern microwave methods in solid-state Inorganic Materials Chemistry: from Fundamentals to Manufacturing. Chem Rev 114:1170–1206

    CAS  PubMed  Google Scholar 

  37. Rybakov KI, Olevsky EA, Krikun EV (2013) Microwave sintering: Fundamentals and modeling. J Am Ceram Soc 96:1003–1020

    CAS  Google Scholar 

  38. Kamiya N, Nishi K, Yokomori Y (2008) Crystal structure of pollucite. Z Krist-Cryst Mater 223:584–590

    CAS  Google Scholar 

  39. Komarneni S, McCarthy GJ, Gallagher SAJINCL (1978) Cation exchange behavior of synthetic cesium aluminosilicates. Nucl Chem 14:173–177

    CAS  Google Scholar 

  40. He P, Cui J, Wang M, Fu S, Yang H, Sun C, Duan X, Yang Z, Jia D, Zhou Y (2020) Interplay between storage temperature, medium and leaching kinetics of hazardous wastes in Metakaolin-based geopolymer. J Hazard Mater 384:121377

    CAS  PubMed  Google Scholar 

  41. Yang Y, Cao X, Shi L, Zhang Z, Wang P, Li J, Sun Y, Chen S, Wang T, Ma LJJoM (2021) Thermal evolution effects on the properties of converting Cs-polluted soil into pollucite-base glass-ceramics for radioactive cesium immobilization. J Mat 7:1335–1343

    Google Scholar 

  42. Omerasevic M, Matovic L, Ruzic J, Golubovic Z, Jovanovic U, Mentus S, Dondur V (2016) Safe trapping of cesium into pollucite structure by hot-pressing method. J Nucl Mater 474:35–44

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project Approved by the Natural science foundation of Hunan Province (Grant Nos. 2021JJ40463; 2020JJ5463); the Provincial Education Department of Hunan Province, China (No.19A420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhitao Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., He, Z., Xie, Y. et al. Rapid immobilization of Cs+ using Cs-containing ceramics obtained by hydrothermal-microwave treatment. J Radioanal Nucl Chem 332, 3813–3825 (2023). https://doi.org/10.1007/s10967-023-09070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09070-5

Keywords

Navigation