Skip to main content
Log in

Vitrification of simulated high-level liquid waste by laser

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A safe and efficient method is necessary for the treatment of high-level liquid waste (HLLW). Therefore, we propose for the first time the use of laser to simulate the glass curing of HLLW. In this paper, borosilicate glasses containing 16% simulated oxides were successfully sintered by laser at different temperatures (1050 °C–1200 °C). A series of properties of the obtained cured bodies were analyzed. The results show that the cured body can be prepared above 1100 °C to meet the requirements. This demonstrates the potential application of lasers in the treatment of HLLW glass curing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Orlova AI (2022) Crystalline phosphates for HLW immobilization-composition, structure, properties and production of ceramics. Spark plasma sintering as a promising sintering technology. J Nucl Mater 559:153407. https://doi.org/10.1016/j.jnucmat.2021.153407

    Article  CAS  Google Scholar 

  2. Bonnet J, Mosser-Ruck R, Sterpenich J et al (2022) Chemical and mineralogical characterizations of a low-pH cementitious material designed for the disposal cell of the high-level radioactive waste (HLW). Cem Concr Res 162:107013. https://doi.org/10.1016/j.cemconres.2022.107013

    Article  CAS  Google Scholar 

  3. Rigby JC, Dixon DR, Kloužek J et al (2023) Alternative reductants for foam control during vitrification of high-iron high level waste (HLW) feeds. J Non-Cryst Solids 608:122240. https://doi.org/10.2139/ssrn.4241787

    Article  CAS  Google Scholar 

  4. Verhoeven B, Bogaerts W, Van Aken P et al (2022) (2022) Pitting and general corrosion susceptibilities of materials for high level radioactive waste (HLW) disposal. Materials 15(18):6464. https://doi.org/10.3390/ma15186464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lago DC, Sánchez AD, Prado MO (2022) Immobilization of a simulated high-level waste in an yttrium aluminosilicate glass. Self-heating assessment. J Eur Ceram Soc 42(16):7561–7569. https://doi.org/10.1016/j.jeurceramsoc.2022.08.048

    Article  CAS  Google Scholar 

  6. Jantzen CM, Lee WE, Ojovan MI (2013) Radioactive waste conditioning, immobilization, and encapsulation processes and technologies: overview and advances. In: Jantzen Radioactive waste management and contaminated site clean-up: processes, technologies and international experience. Woodhead Publishing, Cambridge

  7. Fuks L, Herdzik-Koniecko I, Kiegiel K et al (2022) Methods of thermal treatment of radioactive waste. Energies 15(1):375. https://doi.org/10.3390/en15010375

    Article  CAS  Google Scholar 

  8. Skrigan IN, Lopukh DB, Vavilov AV et al (2022) A numerical study of sedimentation of noble metals during vitrification of high-level waste using cold hearth melting. Russ Electr Engin 93(3):162–167. https://doi.org/10.3103/S1068371222030129

    Article  Google Scholar 

  9. Crum J, Maio V, McCloy J et al (2014) Cold crucible induction melter studies for making glass ceramic waste forms: a feasibility assessment. J Nucl Mater 444(1–3):481–492. https://doi.org/10.1016/j.jnucmat.2013.10.029

    Article  CAS  Google Scholar 

  10. Quazi MM, Ishak M, Fazal MA et al (2020) Current research and development status of dissimilar materials laser welding of titanium and its alloys. Opt Laser Technol 126:106090. https://doi.org/10.1016/j.optlastec.2020.106090

    Article  CAS  Google Scholar 

  11. Tan C, Weng F, Sui S et al (2021) Progress and perspectives in laser additive manufacturing of key aeroengine materials. Int J Mach Tool Manu 170:103804. https://doi.org/10.1016/j.ijmachtools.2021.103804

    Article  Google Scholar 

  12. Mizzi L, Salvati E, Spaggiari A et al (2020) Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting. Int J Mech Sci 167:105242. https://doi.org/10.1016/j.ijmecsci.2019.105242

    Article  Google Scholar 

  13. Fiocchi J, Tuissi A, Biffi CA (2021) Heat treatment of aluminium alloys produced by laser powder bed fusion: a review. Mater Des 204:109651. https://doi.org/10.1016/j.matdes.2021.109651

    Article  CAS  Google Scholar 

  14. Goel A, McCloy JS, Pokorny R et al (2019) Challenges with vitrification of Hanford High-Level Waste (HLW) to borosilicate glass–an overview. J Non-Cryst Solids X4:100033. https://doi.org/10.1016/j.nocx.2019.100033

    Article  CAS  Google Scholar 

  15. Yu S, Liu L, Han L et al (2022) Ultra-high power laser for vitrification of borosilicate glass. AIP Adv 12(9):095211. https://doi.org/10.1063/5.0102864

    Article  CAS  Google Scholar 

  16. Sun J, Liu L, Han L et al (2022) 100 kW ultra high power fiber laser. Opt Continuum 1(9):1932–1938. https://doi.org/10.1364/OPTCON.465836

    Article  CAS  Google Scholar 

  17. ASTM International (2014) Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: the product consistency test (PCT), West Conshohocken, PA

  18. Lucacel RC, Radu T, Tătar AS et al (2014) The influence of local structure and surface morphology on the antibacterial activity of silver-containing calcium borosilicate glasses. J Non-Cryst Solids 404:98–103. https://doi.org/10.1016/j.jnoncrysol.2014.08.004

    Article  CAS  Google Scholar 

  19. El-Damrawi G, El-Egili K (2001) Characterization of novel CeO2–B2O3 glasses, structure and properties. Physica B 299(1–2):180–186. https://doi.org/10.1016/S0921-4526(00)00593-7

    Article  CAS  Google Scholar 

  20. Lai Y, Zeng Y, Tang X et al (2016) Structural investigation of calcium borosilicate glasses with varying Si/Ca ratios by infrared and Raman spectroscopy. RSC Adv 6(96):93722–93728. https://doi.org/10.1039/C6RA20969F

    Article  CAS  Google Scholar 

  21. Doweidar H, Saddeek YB (2010) Effect of La2O3 on the structure of lead borate glasses. J Non-Cryst Solids 356(28–30):1452–1457. https://doi.org/10.1016/j.jnoncrysol.2010.04.036

    Article  CAS  Google Scholar 

  22. Mansour E (2011) Structure and electrical conductivity of new Li2O–CeO2–B2O3 glasses. J Non-Cryst Solids 357(5):1364–1369. https://doi.org/10.1016/j.jnoncrysol.2010.09.026

    Article  CAS  Google Scholar 

  23. Tan S, Ojovan MI, Hyatt NC et al (2015) MoO3 incorporation in magnesium aluminosilicate glasses. J Nucl Mater 458:335–342. https://doi.org/10.1016/j.jnucmat.2014.11.069

    Article  CAS  Google Scholar 

  24. Brehault A, Patil D, Kamat H et al (2018) Compositional dependence of solubility/retention of molybdenum oxides in aluminoborosilicate-based model nuclear waste glasses. J Phys Chem B 122(5):1714–1729. https://doi.org/10.1021/acs.jpcb.7b09158

    Article  CAS  PubMed  Google Scholar 

  25. Zhang S, Ding Y, Lu X et al (2016) Rapid and efficient disposal of radioactive contaminated soil using microwave sintering method. Mater Lett 175:165–168. https://doi.org/10.1016/j.matlet.2016.04.018

    Article  CAS  Google Scholar 

  26. Min BY, Kang Y, Song PS et al (2007) Study on the vitrification of mixed radioactive waste by plasma arc melting. J Ind Eng Chem 13(1):57–64

    CAS  Google Scholar 

  27. Yan H, Chen Q, Zhang G et al (2020) Reevaluating the efficacy of moderate annealing in nuclear waste vitrification for sustainable high-level waste management. J Cleaner Prod 268:122155. https://doi.org/10.1016/j.jclepro.2020.122155

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wuhan Municipal Science and Technology Major Project (Grant No. 2021012002023424). The authors also acknowledge Wuhan Raycus Fiber Laser Technologies Co. Ltd. for the 100 kW CW fiber laser and China Building Materials Academy for borosilicate glass beads.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lie Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Ling, K., Zhang, J. et al. Vitrification of simulated high-level liquid waste by laser. J Radioanal Nucl Chem 332, 3733–3740 (2023). https://doi.org/10.1007/s10967-023-09065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09065-2

Keywords

Navigation