Skip to main content
Log in

Uranium-specific adsorbent L-serine intercalated Mg–Al layered bimetallic (hydrogen) oxides for selectively treating uranium-containing wastewater

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Two Mg–Al layered bimetallic (hydrogen) oxides with uranium selective deposited space were obtained by intercalating bimetallic (hydrogen) oxides with L-serine with active amino and carboxyl sites, which showed excellent uranyl selectivity from cation mixture solutions of Ni2+, Co2+, Sr2+, Zn2+, La3+, Gd3+, Ce3+, and Sn4+. It was firstly proved in L-serine intercalated Mg–Al layered bimetallic (hydrogen) oxides. The key parameter, maximum uranium uptake amount, reached 1028.37 mg/g for LS-LDH and 1018.50 mg/g for MgAl-LDO/C at pH 4.5. These merits coupling with very high uptake capacity, highly cost effectivity, facile preparation and acceptable recycle performance makes LS-LDH and MgAl-LDO/C promising in the treatment of uranium-containing solutions. The study enables the understanding of selectively treating uranium-containing wastewater with L-serine intercalated Mg–Al layered bimetallic (hydrogen) oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data available on request from the authors. The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Wang S, Wang C, Yang XF, Yu JP, Tao WQ, Yang SL, Ren P, Yuan LY, Chai ZF, Shi WQ (2021) Selective separation of Am(III)/Eu(III) by the QL-DAPhen ligand under high acidity: extraction, spectroscopy, and theoretical calculations. Inorg Chem 60:19110–19119. https://doi.org/10.1021/acs.inorgchem.1c02916

    Article  CAS  PubMed  Google Scholar 

  2. Zhu L, Zhang L, Li J, Zhang D, Chen L, Sheng D, Yang S, Xiao C, Wang J, Chai Z, Albrecht-Schmitt TE, Wang S (2017) Selenium sequestration in a cationic layered rare earth hydroxide: a combined batch experiments and EXAFS investigation. Environ Sci Technol 51:8606–8615. https://doi.org/10.1021/acs.est.7b02006

    Article  CAS  PubMed  Google Scholar 

  3. Gao Z, Lai Y, Gong L, Zhang L, Xi S, Sun J, Zhang L, Luo F (2022) Robust Th-MOF-supported semirigid single-metal-site catalyst for an efficient acidic oxygen evolution reaction. ACS Catal 12:9101–9113. https://doi.org/10.1021/acscatal.2c02181

    Article  CAS  Google Scholar 

  4. Liu X, Wang X, Jiang W, Zhang CR, Zhang L, Liang RP, Qiu JD (2022) Covalent organic framework modified carbon nanotubes for removal of uranium (VI) from mining wastewater. Chem Eng J. https://doi.org/10.1016/j.cej.2022.138062

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cheng XD, Chu J, Zhang LD, Suo ZR, Tang W (2022) Intracellular and extracellular untargeted metabolomics reveal the effect of acute uranium exposure in HK-2 cells. Toxicology. https://doi.org/10.1016/j.tox.2022.153196

    Article  PubMed  Google Scholar 

  6. Tillman FD, Beisner KR, Anderson JR, Unema JA (2021) An assessment of uranium in groundwater in the Grand Canyon region. Sci Rep. https://doi.org/10.1038/s41598-021-01621-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yuan Y, Yu Q, Wen J, Li C, Guo Z, Wang X, Wang N (2019) Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber. Angew Chem-Int Ed 58:11785–11790. https://doi.org/10.1002/anie.201906191

    Article  CAS  Google Scholar 

  8. Feng ML, Sarma D, Qi XH, Du KZ, Huang XY, Kanatzidis MG (2016) Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J Am Chem Soc 138:12578–12585. https://doi.org/10.1021/jacs.6b07351

    Article  CAS  PubMed  Google Scholar 

  9. Xiong T, Li Q, Liao J, Zhang Y, Zhu W (2022) Highly enhanced adsorption performance to uranium (VI) by facile synthesized hydroxyapatite aerogel. J Hazard Mater 423:127184

    Article  CAS  PubMed  Google Scholar 

  10. Jana A, Unni A, Ravuru SS, Das A, Das D, Biswas S, Sheshadri H, De S (2022) In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: a case study with real life uranium alkaline leach liquor. Chem Eng J 428:131180

    Article  CAS  Google Scholar 

  11. Lee HK, Chang S, Park W, Kim TJ, Park S, Jeon H (2022) Effective treatment of uranium-contaminated soil-washing effluent using precipitation/flocculation process for water reuse and solid waste disposal. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2022.102890

    Article  Google Scholar 

  12. Orabi AH, Mohamed BT, Ismaiel DA, Elyan SS (2021) Sequential separation and selective extraction of uranium and thorium from monazite sulfate leach liquor using dipropylamine extractant. Miner Eng. https://doi.org/10.1016/j.mineng.2021.107151

    Article  Google Scholar 

  13. Dai Y, Cao B, Zhong S, Xie G, Wang Y, Liu Y, Zhang Z, Liu Y, Cao X (2019) Homogeneous liquid–liquid extraction of europium from aqueous solution with ionic liquids. J Radioanal Nucl Chem 319:1219–1225. https://doi.org/10.1007/s10967-019-06419-7

    Article  CAS  Google Scholar 

  14. Gong X, Tang L, Zou J, Guo ZH, Li YL, Lei J, Liu HH, Liu M, Zhou L, Huang PL, Ruan HM, Lu YX, Zhu WK, He R (2022) Introduction of cation vacancies and iron doping into TiO2 enabling efficient uranium photoreduction. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.126935

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liang PL, Yuan LY, Deng H, Wang XC, Wang L, Li ZJ, Luo SZ, Shi WQ (2020) Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Appl Catal B-Environ. https://doi.org/10.1016/j.apcatb.2020.118688

    Article  Google Scholar 

  16. Darge AW, DeVol TA, Husson SM (2022) Phosphate-based reactive membranes for uranium isotopic screening. Ind Eng Chem Res 61:40. https://doi.org/10.1021/acs.iecr.2c02604

    Article  CAS  Google Scholar 

  17. Reda AT, Zhang DX (2019) Sorption of metal ions from aqueous solution by sulfonated calix[4]arene intercalated with layered double hydroxide. J Environ Chem Eng 7:103021. https://doi.org/10.1016/j.jece.2019.103021

    Article  CAS  Google Scholar 

  18. Wang H, Yao HQ, Chen LH, Yu ZH, Yang LX, Li C, Shi KR, Li CQ, Ma SL (2021) Highly efficient capture of uranium from seawater by layered double hydroxide composite with benzamidoxime. Sci Total Environ 759:143483. https://doi.org/10.1016/j.scitotenv.2020.143483

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Tang LP, Ma XX, Wang XR, Zhou W, Bai DS (2017) Synthesis and characterization of Zn–Ti layered double hydroxide intercalated with cinnamic acid for cosmetic application. J Phys Chem Solids 107:62–67. https://doi.org/10.1016/j.jpcs.2017.02.018

    Article  CAS  Google Scholar 

  20. Mishra G, Dash B, Pandey S (2018) Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl Clay Sci 153:172–186. https://doi.org/10.1016/j.clay.2017.12.021

    Article  CAS  Google Scholar 

  21. Zhang GG, Fang YG, Wang YD, Liu LJ, Mei DC, Ma FQ, Meng YJ, Dong HX, Zhang CH (2022) Synthesis of amino acid modified MIL-101 and efficient uranium adsorption from water. J Mol Liq. https://doi.org/10.1016/j.molliq.2021.118095

    Article  Google Scholar 

  22. Li Y, Dai Y, Tao QQ, Gao Z, Xu L (2022) Ultrahigh efficient and selective adsorption of U(VI) with amino acids-modified magnetic chitosan biosorbents: performance and mechanism. Int J Biol Macromol 214:54–66. https://doi.org/10.1016/j.ijbiomac.2022.06.061

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Dai Y, Tao Q, Xu L (2022) Synthesis and characterization of amino acid-functionalized chitosan/poly(vinyl alcohol) for effective adsorption of uranium. J Radioanal Nucl Chem 331:4753–4765. https://doi.org/10.1007/s10967-022-08587-5

    Article  CAS  Google Scholar 

  24. Tao Q, Xie J, Li Y, Dai Y, Liu Z (2022) Effects of dry processing on adsorption of uranium on Mg–Al layered double hydroxides and calcined layered double oxides. J Radioanal Nucl Chem 331:4587–4600. https://doi.org/10.1007/s10967-022-08529-1

    Article  CAS  Google Scholar 

  25. Saleh TA (2022) Chapter 4-Isotherm models of adsorption processes on adsorbents and nanoadsorbents. In: Saleh TA (ed) Interface science and technology, vol 34. Elsevier, Netherlands, pp 99–126. https://doi.org/10.1016/B978-0-12-849876-7.00009-9

    Chapter  Google Scholar 

  26. Muhire C, Zhang D, Xu X (2022) Adsorption of uranium (VI) ions by LDH intercalated with l-methionine in acidic water: Kinetics, thermodynamics and mechanisms. Results Eng 16:100686. https://doi.org/10.1016/j.rineng.2022.100686

    Article  CAS  Google Scholar 

  27. Tu J, Peng X, Wang S, Tian C, Deng H, Dang Z, Lu G, Shi Z, Lin Z (2019) Effective capture of aqueous uranium from saline lake with magnesium-based binary and ternary layered double hydroxides. Sci Total Environ 677:556–563. https://doi.org/10.1016/j.scitotenv.2019.04.429

    Article  CAS  PubMed  Google Scholar 

  28. Ma S, Huang L, Ma L, Shim Y, Islam SM, Wang P, Zhao L-D, Wang S, Sun G, Yang X, Kanatzidis MG (2015) Efficient uranium capture by polysulfide/layered double hydroxide composites. J Am Chem Soc 137:3670–3677. https://doi.org/10.1021/jacs.5b00762

    Article  CAS  PubMed  Google Scholar 

  29. Yin L, Hu Y, Ma R, Wen T, Wang X, Hu B, Yu Z, Hayat T, Alsaedi A, Wang X (2019) Smart construction of mesoporous carbon templated hierarchical Mg–Al and Ni–Al layered double hydroxides for remarkably enhanced U(VI) management. Chem Eng J 359:1550–1562. https://doi.org/10.1016/j.cej.2018.11.017

    Article  CAS  Google Scholar 

  30. Chen M, Li S, Li L, Jiang L, Ahmed Z, Dang Z, Wu P (2021) Memory effect induced the enhancement of uranium (VI) immobilization on low-cost MgAl-double oxide: mechanism insight and resources recovery. J Hazard Mater 401:123447. https://doi.org/10.1016/j.jhazmat.2020.123447

    Article  CAS  PubMed  Google Scholar 

  31. Asiabi H, Yamini Y, Shamsayei M (2018) Highly efficient capture and recovery of uranium by reusable layered double hydroxide intercalated with 2-mercaptoethanesulfonate. Chem Eng J 337:609–615. https://doi.org/10.1016/j.cej.2017.12.143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Natural Science Foundation of China (22066001) and the Natural Science Foundation of Jiangxi Province of China (20212ACB213001, 20224BAB203030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dai Ying or Tao Qinqin.

Ethics declarations

Conflict of interest

It should be understood that none of the authors have any financial or scientific conflicts of interest with regard to the research described in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusheng, W., Ying, D., Wenmei, H. et al. Uranium-specific adsorbent L-serine intercalated Mg–Al layered bimetallic (hydrogen) oxides for selectively treating uranium-containing wastewater. J Radioanal Nucl Chem 332, 3741–3752 (2023). https://doi.org/10.1007/s10967-023-09060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09060-7

Keywords

Navigation