Skip to main content
Log in

Green synthesis of copper iodide nanoparticles: gamma irradiation for spectroscopic sensing of cancer biomarker CA 19-9

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A simple, fast, green and cost-effective method is designed for the synthesis of copper iodide nanoparticles (CuI-NP) for spectroscopic detection of cancer biomarker, carbohydrate antigen 19-9 (CA 19-9). Results of UV-visible spectroscopy establish the efficacy of prepared CuI-NP to sense CA 19-9 in serum medium even at its low concentration (~ 0.066 U/mL). Our study reveals that γ-irradiated (24 h) copper iodide nanoparticles (CuI-NP-γ) have higher sensitivity towards CA 19-9 sensing due to their higher surface activity and charged nature as compared to CuI-NP. CuI-NP-γ could deliver higher signal enhancement and was able to lower the limit of detection (LOD) of CA 19-9 from 0.082 to 0.066 U/mL. Results also indicate that in presence of high concentration of glucose, cholesterol, bilirubin and insulin, which cause pathophysiological disorders like diabetes, hypercholesterolemia, hepatic disorder, hyperinsulinemia, etc., the LOD is even lower (0.037, 0.034, 0.157, 0.029 U/mL respectively). The interaction between the biomarker and the NPs were further established using fluorescence and circular dichroism spectroscopy. The specificity of sensing was tested by checking the response in presence of other biomarkers, like CEA and CA-125 which did not show any signal enhancement with CuI-NP-γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, Hruban RH (2013) Recent progress in pancreatic cancer. CA Cancer J Clin 63:318–348

    PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34

    PubMed  Google Scholar 

  3. Jawad ZAR, Theodorou IG, Jiao LR, Xie F (2017) Highly sensitive plasmonic detection of the pancreatic cancer biomarker CA19-9. Sci Rep 7:1–7

    CAS  Google Scholar 

  4. Huang Z, Jiang Z, Zhao C, Han W, Lin L, Liu A, Weng S, Lin X (2017) Simple and effective label-free electrochemical immunoassay for carbohydrate antigen 19 – 9 based on polythionine-Au composites as enhanced sensing signals for detecting different clinical samples. Int J Nanomed 12:3049–3058

    CAS  Google Scholar 

  5. Xu X, Xiao Y, Hong B, Hao B, Qian Y (2019) Combined detection of CA19-9 and B7-H4 in the diagnosis and prognosis of pancreatic cancer. Cancer Biomark 25:251–257

    CAS  PubMed  Google Scholar 

  6. Wu E, Zhou S, Bhat K, Ma Q (2013) CA 19 – 9 and pancreatic cancer. Clin Adv Hematol Oncol 11:53–55

    PubMed  PubMed Central  Google Scholar 

  7. Passerini R, Cassatella MC, Boveri S, Salvatici M, Radice D, Zorzino L, Galli C, Sandri MT (2012) The Pitfalls of CA19-9: routine testing and comparison of two automated Immunoassays in a reference Oncology Center. Am J Clin Path 138:281–287

    CAS  PubMed  Google Scholar 

  8. Duffy MJ (1998) CA 19-9 as a marker for gastrointestinal cancers: a review. Ann Clin Biochem 35:364–370

    PubMed  Google Scholar 

  9. Zhu H, Fan GC, Abdel-Halim ES, Zhang JR, Zhu JJ (2016) Ultrasensitive photoelectrochemical immunoassay for CA19-9 detection based on CdSe@ZnS quantum dots sensitized TiO2NWs/Au hybrid structure amplified by quenching effect of Ab2@V2+ conjugates. Biosens Bioelectron 77:339–346

    CAS  PubMed  Google Scholar 

  10. Park IJ, Choi GS, Jun SH (2009) Prognostic value of serum tumor antigen CA 19-9 after curative resection of colorectal cancer. Anticancer Res 29:4303–4308

    PubMed  Google Scholar 

  11. Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Biostruct 3:115–122

    Google Scholar 

  12. Xavier SSJ, Karthikeyan C, Kim AR, Yoo DJ (2014) Colorimetric detection of melamine using β-cyclodextrin-functionalized silver nanoparticles. Anal Methods 6:8165–8172

    Google Scholar 

  13. Korde P, Ghotekar S, Pagar T, Pansambal S, Oza R, Mane D (2020) Plant extract assisted eco-benevolent synthesis of selenium nanoparticles-a review on plant parts involved, characterization and their recent applications. J Chem Rev 2:157–168

    CAS  Google Scholar 

  14. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802–812

    CAS  PubMed  Google Scholar 

  15. Cao Y, Mo G, Feng J, He X, Tang L, Yu C, Deng B (2018) Based on ZnSe quantum dots labeling and single particle mode ICP-MS coupled with sandwich magnetic immunoassay for the detection of carcinoembryonic antigen in human serum. Anal Chim Acta 1028:22–31

    CAS  PubMed  Google Scholar 

  16. Feraoun H, Aourag H, Certier M (2003) Theoretical studies of substoichiometric CuI Mater. Chem Phys 82:597–601

    CAS  Google Scholar 

  17. Naoomi Y, Ryuichiro I, Yoshihiko N (2016) Truly transparent p-type γ -CuI thin films with high hole mobility. Chem Mater 28:4971–4981

    Google Scholar 

  18. Perera VPS, Tennakone K (2003) Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector. Sol Energy Mat Sol Cells 79:249–255

    CAS  Google Scholar 

  19. Yang M, Xu JZ, Xu S, Zhu JJ, Chen HY (2004) Preparation of porous spherical CuI nanoparticles. Inorg Chem Commun 7:628–630

    CAS  Google Scholar 

  20. Sreedhar B, Arundhathi R, Reddy PL, Kantam ML (2009) CuI nanoparticles for C–N and C–O cross coupling of heterocyclic amines and phenols with chlorobenzenes. J Org Chem 74:7951–7954

    CAS  PubMed  Google Scholar 

  21. Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    CAS  PubMed  Google Scholar 

  22. Vijayakumar A, Rajagopal R (2016) Green synthesis and characterisation of copper (I) iodide nanoparticles using kidney bean seed extract and its anti-bacterial activity. Int J Sci Eng Res 7:602–609

    Google Scholar 

  23. Fernandez AC, Archana KM, Rajagopal R (2020) Green synthesis, characterization, catalytic and antibacterial studies of copper iodide nanoparticles synthesized using Brassica oleracea var capitata f rubra extract. Chem Data Coll 29:100538

    CAS  Google Scholar 

  24. Akai TIA, Karasawa T, Kojima K, Komatsu T (2000) Exciton transitions in the hexagonal CuI microcrystallites grown on polymers. J Lumin 87:516–518

    Google Scholar 

  25. Tennakone K, Kumara GRRA, Kottegoda IRM, Perera VPS, Aponsu GMLP, Wijayantha KGU (1998) Deposition of thin conducting flms of CuI on glass. Sol Energy Mater Sol Cells 55:283–289

    CAS  Google Scholar 

  26. Liu Y, Zhan J, Zeng J, Qian Y, Tang K, Yu W (2001) Ethanolthermal synthesis to γ-CuI nanocrystals at low temperature. J Mater Sci Lett 20:1865–1867

    CAS  Google Scholar 

  27. Penner RM (2003) Hybrid electrochemical/chemical synthesis of quantum dots. Acc Chem Res 33:78

    Google Scholar 

  28. Sirimanne PM, Soga T, Jimbo T (2003) Identification of various luminescence centers in CuI films by cathodoluminescence technique. J Luminesc 105:105–109

    CAS  Google Scholar 

  29. Abdelghany AM, Abdelrazek EM, Badr SI, Abdel-Aziz MS, Morsi MA (2017) Effect of Gamma-irradiation on biosynthesized gold nanoparticles using Chenopodium murale leaf extract. J Saudi Chem Soc 21:528–537

    CAS  Google Scholar 

  30. Ansari Z, Dhara S, Bandyopadhyay B, Saha A, Sen K (2016) Spectral anion sensing and γ-radiation induced magnetic modifications of polyphenol generated Ag-nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 156:98–104

    CAS  PubMed  Google Scholar 

  31. Tavakoli F, Salavati-Niasari M, Mohandes F (2013) Green synthesis of flower-like CuI microstructures composed of trigonal nanostructures using pomegranate juice. Mater Lett 100:133–136

    CAS  Google Scholar 

  32. Phetcharat P, Sangsanoh P, Choipang C, Chaiarwut S, Suwantong O, Chuysinuan P, Supaphol P (2023) Curative effects of copper Iodide embedded on gallic acid incorporated in a poly (vinyl alcohol)(PVA) liquid bandage. Gels 9(1):53

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Archana KM, Yogalakshmi D, Rajagopal R (2019) Application of green synthesized nanocrystalline CuI in the removal of aqueous mn (VII) and cr (VI) ions. SN Appl Sci 1:522

    CAS  Google Scholar 

  34. Indubala E, Dhanasekar M, Sudha V, Malar EP, Divya P, Sherine J, Rajagopal R, Bhat SV, Harinipriya S (2018) L-Alanine capping of ZnO nanorods: increased carrier concentration in ZnO/CuI heterojunction diode. RSC Adv 8(10):5350–5361

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pérez-Alvarez M, Cadenas-Pliego G, Pérez-Camacho O, Comparán-Padilla VE, Cabello-Alvarado CJ, Saucedo-Salazar E (2021) Green synthesis of copper nanoparticles using cotton. Polymers 13(12):1906

    PubMed  PubMed Central  Google Scholar 

  36. Singh P, Ansari Z, Ray S, Bandyopadhyay B, Sen K (2020) Effect of γ-irradiation on ruthenium-morin nanocomposite for trace detection of ce(IV), Ce(III) and Dy(III). Mater Chem Phys 248:122949

    CAS  Google Scholar 

  37. Panhwar QK, Memon S (2014) Synthesis of Cr (III)-morin complex: characterization and antioxidant study. Sci World J, 2014

  38. Ansari Z, Bhattacharya TS, Saha A, Sen K (2019) γ-Irradiated Ni-hesperidin nanocomposite for selective trace-level sensing of sulfide ions. J Radioanal Nucl Chem 322:79–88

    CAS  Google Scholar 

  39. Ansari Z, Sarkar K, Saha A, Singha A, Sen K (2016) Enhanced anion sensing by γ-irradiated polyphenol capped iron oxide nanoparticles. J Radioanal Nucl Chem 308:517–525

    CAS  Google Scholar 

  40. Lavanya N, Anithaa AC, Sekar C, Asokan K, Bonavita A, Donato N, Leonardi SG, Neri G (2017) Effect of gamma irradiation on structural, electrical and gas sensing properties of tungsten oxide nanoparticles. J Alloys Compd 693:366–372

    CAS  Google Scholar 

  41. Qindeel R (2017) Effect of gamma radiation on morphological and optical properties of ZnO nanopowder. Results Phys 7:807–809

    Google Scholar 

  42. Zhang H, Wang M, Chen L, Liu Y, Liu H, Huo H, Sun L, Ren X, Deng Y, Qi A (2017) Structure-solubility relationships and thermodynamic aspects of solubility of some flavonoids in the solvents modeling biological media. J Mol Liq 225:439–445

    CAS  Google Scholar 

  43. Abbad S, Wang C, Waddad AY, Lv H, Zhou J (2015) Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid- poly (butyl cyanoacrylate) and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor- targeted delivery of morin hydrate. Int J Nanomed 10:305–320

    Google Scholar 

  44. Waddad AY, Abbad S, Yu F, Munyendo WLL, Wang J, Lv H, Zhou J (2013) Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. Int J Pharm 456:446–458

    CAS  PubMed  Google Scholar 

  45. Gopal JV (2013) Morin Hydrate: botanical origin, pharmacological activity and its applications: a mini-review. Pharmacogn J 5:123–126

    Google Scholar 

  46. Fairley N, Fernandez V, Richard-Plouet M, Guillot-Deudon C, Walton J, Smith E, Flahaut D, Greiner M, Biesinger M, Tougaard S, Morgan D, Baltrusaitis J (2021) Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl Surf Sci 5:100112

    Google Scholar 

  47. Vu DKN, Nguyen DKV (2021) Gamma irradiation-assisted synthesis of silver nanoparticle-embedded graphene oxide-TiO2 nanotube nanocomposite for organic dye photodegradation. J Nanomater 2021:1–14

    Google Scholar 

  48. Klug TL, LeDonne NC, Greber TF, Zurawski VR (1988) Purification and composition of a novel gastrointestinal tumor-associated glycoprotein expressing sialylated lacto-N-fucopentaose II (CA 19-9). Cancer Res 48:1505–1511

    CAS  PubMed  Google Scholar 

  49. Castaño C, Vignoni M, Vicendo P, Oliveros E, Thomas AH (2016) Degradation of tyrosine and tryptophan residues of peptides by type I photosensitized oxidation. J Photochem Photobiol B Biol 164:226–235

    Google Scholar 

  50. Das D, Sen K (2021) Effect of organo-selenium anticancer drugs on nitrite induced methemoglobinemia: a spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 245:118946

    CAS  PubMed  Google Scholar 

  51. Sanches NB, Pedro R, Diniz MF, Mattos EDC, Cassu SN, Dutra RDCL (2013) Infrared spectroscopy applied to materials used as thermal insulation and coatings. J Aerosp Technol Manag 5:421–430

    CAS  Google Scholar 

  52. Yang C, Lin K, Chang J (2015) A simple way to synthesize 3D hierarchical HAp porous microspheres with sustained drug release. Ceram Int 41:11153–11160

    CAS  Google Scholar 

  53. Maria MFF, Ikhmal WMKWM, Amirah MNNS, Manja SM, Syaizwadi SM, Chan KS, Sabri MGM, Adnan A (2019) Green approach in anti-corrosion coating by using Andrographis paniculata leaves extract as additives of stainless steel 316L in seawater. Int J Corros Scale Inhib 8:644–658

    CAS  Google Scholar 

  54. Trivedi M, Branton A, Trivedi D, Shettigar H, Bairwa K, Jana S (2015) Fourier transform infrared and ultraviolet-visible spectroscopic characterization of biofield treated salicylic acid and sparfloxacin. Nat Prod Chem Res 5

  55. Ortiz E, Solis H, Noreña L, Loera-Serna S (2017) Degradation of red anthraquinone dyes: alizarin, alizarin S and alizarin complexone by ozonation. Int J Environ Sci Dev 8:255

    CAS  Google Scholar 

  56. Liu X, Liu Z, Wang L, Zhang S, Zhang H (2017) Preparation and performance of composite films based on 2-(2-aminoethoxy) ethyl chitosan and cellulose. RSC Adv 7:13707–13713

    CAS  Google Scholar 

  57. Rohatgi CV, Dutta NK, Choudhury NR (2015) Separator membrane from crosslinked poly (Vinyl Alcohol) and poly (methyl vinyl ether-alt-maleic anhydride). Nanomaterials 5:398–414

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chandran A, Mary S, Varghese HT, Panicker CY, Manojkumar TK, Alsenoy CV, Rajendran G (2012) Vibrational spectroscopic study of (E)-4-(benzylideneamino)-N-carbamimidoyl benzenesulfonamide. Int Sch Res Notices 2012

  59. Panhwar QK, Memon S, Bhanger MI (2010) Synthesis, characterization, spectroscopic and antioxidation studies of Cu (II)–morin complex. J Mol Struct 967:47–53

    CAS  Google Scholar 

  60. Yao K, Chen P, Zhang Z, Li J, Ai R, Ma H, Zhao B, Sun G, Wu R, Tang X, Li B, Hu J, Duan X, Duan X (2018) Synthesis of ultrathin two-dimensional nanosheets and van der Waals heterostructures from non-layered γ-CuI. npj 2D Mater Appl 2(1):16

    Google Scholar 

  61. Akopyan IK, Golubkov VV, Dyatlova OA, Mamaev AN, Novikov BV, Tsagan-Mandzhiev AN (2010) Specific features of the CuI nanocrystal structure in photochromic glasses. Phys Solid State 52:805–809

    CAS  Google Scholar 

  62. Myeni N, Ghosh SK, Perla VK, Mallick K (2019) Copper iodide nanoparticles within the organic matrix: an efficient catalyst for the electro-oxidation of formic acid. Mater Res Express 6(10):1050a7

    CAS  Google Scholar 

  63. Biesinger MC (2017) Advanced analysis of copper X-ray photoelectron spectra. Surf Interface Anal 49:1325–1334

    CAS  Google Scholar 

  64. Moretti G (2013) The Wagner plot and the Auger parameter as tools to separate initial-and final-state contributions in X-ray photoemission spectroscopy. Surf Sci 618:3–11

    CAS  Google Scholar 

  65. Wu E, Zhou S, Bhat K, Ma Q (2013) CA 19-9 and pancreatic cancer. Clin Adv Hematol Oncol 11:53

    PubMed  PubMed Central  Google Scholar 

  66. Alghamdi A, Wellbrock T, Birch DJ, Vyshemirsky V, Rolinski OJ (2019) Cu2+ effects on beta-amyloid oligomerisation monitored by the fluorescence of intrinsic tyrosine. Chem Phys Chem 20:3181–3185

    CAS  PubMed  Google Scholar 

  67. Rimola A, Rodríguez-Santiago L, Sodupe M (2006) Cation – π interactions and oxidative effects on Cu+ and Cu2+ binding to phe, tyr, trp, and his amino acids in the gas phase insights from first-principles calculations. J Phys Chem B 110:24189–24199

    CAS  PubMed  Google Scholar 

  68. Yola ML, Atar N (2021) Carbohydrate antigen 19-9 electrochemical immunosensor based on 1D-MoS2 nanorods/LiNb3O8 and polyoxometalate-incorporated gold nanoparticles. Microchem J 170:106643

    CAS  Google Scholar 

  69. Baryeh K, Takalkar S, Lund M, Liu G (2017) Development of quantitative immunochromatographic assay for rapid and sensitive detection of carbohydrate antigen 19-9 (CA 19-9) in human plasma. J Pharm Biomed Anal 146:285–291

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bahari D, Babamiri B, Salimi A (2020) An eco-friendly MIP-solid surface fluorescence immunosensor for detection of CA 19-9 tumor marker using ni nanocluster as an emitter labels. J Iran Chem Soc 17:2283–2291

    CAS  Google Scholar 

  71. Alarfaj NA, El-Tohamy MF, Oraby HF (2018) CA 19-9 pancreatic tumor marker fluorescence immunosensing detection via immobilized carbon quantum dots conjugated gold nanocomposite. Int J Mol Sci 19:1162

    PubMed  PubMed Central  Google Scholar 

  72. Gu B, Xu C, Yang C, Liu S, Wang M (2011) ZnO quantum dot labeled immunosensor for carbohydrate antigen 19-9. Biosens Bioelectron 26:2720–2723

    CAS  PubMed  Google Scholar 

  73. Gan N, Zhou J, Xiong P, Li T, Jiang S, Cao Y, Jiang Q (2013) An ultrasensitive electrochemiluminescence immunoassay for carbohydrate antigen 19-9 in serum based on antibody labeled Fe3O4 nanoparticles as capture probes and graphene/CdTe quantum dot bionanoconjugates as signal amplifiers. Int J Mol Sci 14:10397–10411

    PubMed  PubMed Central  Google Scholar 

  74. Jawad ZA, Theodorou IG, Jiao LR, Xie F (2017) Highly sensitive plasmonic detection of the pancreatic cancer biomarker CA 19-9. Sci Rep 7:1–7

    CAS  Google Scholar 

  75. Huang Y, Wen Y, Baryeh K, Takalkar S, Lund M, Zhang X, Liu G (2017) Lateral flow assay for carbohydrate antigen 19–9 in whole blood by using magnetized carbon nanotubes. Microchim Acta 184:4287–4294

    CAS  Google Scholar 

  76. Mo G, He X, Qin D, Meng S, Wu Y, Deng B (2021) Spatially-resolved dual-potential sandwich electrochemiluminescence immunosensor for the simultaneous determination of carbohydrate antigen 19–9 and carbohydrate antigen 24-2. Biosens Bioelectron 178:113024

    CAS  PubMed  Google Scholar 

  77. Sun AL, Qi QA (2016) Silver-functionalized g-C3N4 nanohybrids as signal-transduction tags for electrochemical immunoassay of human carbohydrate antigen 19-9. Analyst 141:4366–4372

    CAS  PubMed  Google Scholar 

  78. Wang M, Hu M, Hu B, Guo C, Song Y, Jia Q, He L, Zhang Z, Fang S (2019) Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9. Biosens Bioelectron 135:22–29

    CAS  PubMed  Google Scholar 

  79. Tan YY, Sun HN, Liu M, Liu A, Li SS (2022) Simple synthesis of PtRu nanoassemblies as signal amplifiers for electrochemical immunoassay of carbohydrate antigen 19–9. Bioelectrochemistry 148:108263

    CAS  PubMed  Google Scholar 

  80. Rahmani H, Majd SM, Salimi A (2022) Highly sensitive and selective detection of the pancreatic cancer biomarker CA 19 – 9 with the electrolyte-gated MoS2-based field-effect transistor immunosensor. Res Sq

  81. Rahmani H, Majd SM, Salimi A, Ghasemi F (2023) Ultrasensitive immunosensor for monitoring of CA 19-9 pancreatic cancer marker using electrolyte-gated TiS3 nanoribbons field-effect transistor. Talanta 257:124336

    CAS  PubMed  Google Scholar 

  82. Sharifi M, Khalilzadeh B, Bayat F, Isildak I, Tajalli H (2023) Application of thermal annealing-assisted gold nanoparticles for ultrasensitive diagnosis of pancreatic cancer using localized surface plasmon resonance. Microchem J 190:108698

    CAS  Google Scholar 

Download references

Acknowledgements

KS and SB express sincere thanks to UGC-DAE-CSR, Collaborative Research Scheme no. UGC-DAE-CSR/KC/CRS/19/RC07/0982/1017 for providing necessary funding. SB acknowledges UGC-DAE-CSR, Govt. of India for providing fellowship. DD acknowledges the award and funding of CSIR SRA B12827. We express our sincere thanks to Dr. Aparna Datta, UGC-DAE Consortium for Scientific Research, Kolkata, India, for obtaining FTIR and fluorescence data. We thank DST FIST (SR/FST/CS-II/2017/27(C) dated 29.09.2018) and CAS-V (UGC) (540/3/CASV/2015 (SAP-I) for funding the PXRD instrument and UV-Vis spectrophotometer respectively

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalika Sen.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1122 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, S., Das, D., Morgan, D. et al. Green synthesis of copper iodide nanoparticles: gamma irradiation for spectroscopic sensing of cancer biomarker CA 19-9. J Radioanal Nucl Chem 332, 3763–3778 (2023). https://doi.org/10.1007/s10967-023-09056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09056-3

Keywords

Navigation