Skip to main content
Log in

Distribution and characteristics of 137Cs in surface soil in the middle of Laos

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper presents the assessment of the distribution and characteristics of 137Cs activity in surface soil in the middle of Laos. Measurement has been conducted for 212 soil samples distributed evenly in the middle of Laos using low background gamma spectrometers. It is found that the activity concentrations of 137Cs vary in the range of 0.50–7.97 Bq kg−1 with the average value of 1.46 ± 0.21 Bq kg−1. The values agree well with those reported for neighboring regions and are significantly lower than the world average value. Higher activity concentrations of 137Cs were observed in geological formations with claystone, siltstone, and mud. Foothills were found with higher concentrations of 137Cs, while lower 137Cs concentrations were observed in low-altitude plains. No significant variation of the 137Cs activity concentration with terrain elevation was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alewell C, Pitois A, Meusburger K, Ketterer M, Mabit L (2017) 239+240Pu from “contaminant” to soil erosion tracer: Where do we stand? Earth Sci Rev 172:107–123. https://doi.org/10.1016/j.earscirev.2017.07.009

    Article  CAS  Google Scholar 

  2. Meliho M, Nouira A, Benmansour M, Boulmane M, Khattabi A, Mhammdi N, Benkdad A (2019) Assessment of soil erosion rates in a Mediterranean cultivated and uncultivated soils using fallout 137Cs. J Environ Radioact 208:106021. https://doi.org/10.1016/j.jenvrad.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  3. Meusburger K, Mabit L, Ketterer M, Park JH, Sandor T, Porto P, Alewell C (2016) A multi-radionuclide approach to evaluate the suitability of 239+240Pu as soil erosion tracer. Sci Total Environ 566:1489–1499. https://doi.org/10.1016/j.scitotenv.2016.06.035

    Article  CAS  PubMed  Google Scholar 

  4. Porto P, Callegari G (2021) Using 137Cs measurements to estimate soil erosion rates in forest stands affected by wildfires. Results from plot experiments. Appl Radiat Isot 172:109668. https://doi.org/10.1016/j.apradiso.2021.109668

    Article  CAS  PubMed  Google Scholar 

  5. de Andrade Filgueiras R, Garcêz RWD, da Silva LB, Lopes JM, Ribeiro FCA, Viglio EP, da Silva AX (2021) 137Cs activity concentration in soil of Alagoas State, Brazil. Appl Radiat Isot 170:109607. https://doi.org/10.1016/j.apradiso.2021.109607

    Article  CAS  Google Scholar 

  6. UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation (2008) Annex B. Exposures of the Public and Workers from Various Sources of Radiation. United Nations Publications

  7. Krstić D, Nikezić D, Stevanović N, Jelić M (2004) Vertical profile of 137Cs in soil. Appl Radiat Isot 61(6):1487–1492. https://doi.org/10.1016/j.apradiso.2004.03.118

    Article  CAS  PubMed  Google Scholar 

  8. Riduan SD (2012) Assessment of 137Cs activity concentration in soil from tea plantantion areas in Cameron Highlands. J Nucl Rel Technol 9(01):1–5

    Google Scholar 

  9. Jagercikova M, Cornu S, Le Bas C, Evrard O (2015) Vertical distributions of 137Cs in soils: a meta-analysis. J Soils Sediments 15(1):81–95

    Article  CAS  Google Scholar 

  10. Ritchie JC, Ritchie CA (2007) Bibliography of publications of 137Cesium studies related to erosion and sediment deposition. USDA–ARS Hydrology and Remote Sensing Laboratory Occasional Paper HRSL-2007-01. USDA–Agricultural Research Service, Beltsville, MD, USA

  11. Tagami K, Tsukada H, Uchida S (2019) Quantifying spatial distribution of 137Cs in reference site soil in Asia. CATENA 180:341–345

    Article  CAS  Google Scholar 

  12. Furuichi T, Wasson RJ (2013) Caesium-137 in Southeast Asia: Is there enough left for soil erosion and sediment redistribution studies? J Asian Earth Sci 77:108–116. https://doi.org/10.1016/j.jseaes.2013.08.012

    Article  Google Scholar 

  13. Ritchie JC, McHenry JR (1990) Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19(2):215–233

    Article  CAS  Google Scholar 

  14. Ben Slimane A, Raclot D, Evrard O, Sanaa M, Lefèvre I, Ahmadi M, Tounsi M, Rumpel C, Mammou AB, Le Bissonnais Y (2013) Fingerprinting sediment sources in the outlet reservoir of a hilly cultivated catchment in Tunisia. J Soils Sediments 13(4):801–815. https://doi.org/10.1007/s11368-012-0642-6

    Article  CAS  Google Scholar 

  15. Bui VL, Leuangtakoun S, Bui TH, Vu TKD, Le TN, Duong TD, Singsoupho S, Tran HN (2020) Natural radioactivity and radiological hazards in soil samples in Savannakhet province. Laos J Radioanal Nucl Chem 323(1):303–315. https://doi.org/10.1007/s10967-019-06965-0

    Article  CAS  Google Scholar 

  16. Leuangtakoun S, Phan TTG, Duong TD, Le NT, Khong NK, Singsoupho S, Tran HN, Bui VL (2020) Natural radioactivity measurement and radiological hazard evaluation in surface soils in a gold mining area and surrounding regions in Bolikhamxay province. Laos J Radioanal Nucl Chem 326(2):997–1007. https://doi.org/10.1007/s10967-020-07408-x

    Article  CAS  Google Scholar 

  17. Loat BV, Somsavath L, Vu TKD, Khong NK (2017) Natural radioactivity and external dose assessment of surface soils in Bolikhamxay province, Laos. VNU J Sci Maths Phys 33(4):10–16. https://doi.org/10.25073/2588-1124/vnumap.4224

    Article  Google Scholar 

  18. Van LB, Duong VH, Duong NT, Leuangtakoun S, Duc TD, Anh HV, Vu Anh D, Tran HN, Nguyen VD, Vuong Thi HT (2021) Natural radionuclides and assessment of radiological hazards in different geological formations in Khammouan province. Laos J Radioanal Nucl Chem 329(2):991–1000. https://doi.org/10.1007/s10967-021-07854-1

    Article  CAS  Google Scholar 

  19. Xayheungsy S, Le KH (2018) Natural radioactivity in the soil of Thoulakhom district in Vientiane province. Laos Sci Technol Dev J-Nat Sci 2(4):119–125

    Article  Google Scholar 

  20. Alomari AH, Saleh MA, Hashim S, Alsayaheen A, Abukashabeh A (2019) Statistical relationship between activity concentrations of radionuclides 226Ra, 232Th, 40K, and 137Cs and geological formations in surface soil of Jordan. Isot Environ Health Stud 55(2):211–226. https://doi.org/10.1080/10256016.2019.1581776

    Article  CAS  Google Scholar 

  21. IAEA TECDOC 486 (2019) Guidelines on soil and vegetation sampling for radiological monitoring. International Atomic Energy Agency, Vienna

  22. Yücel H (2007) The applicability of MGA method for depleted and natural uranium isotopic analysis in the presence of actinides (232Th, 237Np, 233Pa and 241Am). Appl Radiat Isot 65:1269–1280. https://doi.org/10.1016/j.apradiso.2007.05.007

    Article  CAS  PubMed  Google Scholar 

  23. Clark D (1997) U235: a gamma ray analysis code for uranium isotopic determination, Lawrence Livermore National Laboratory, UCRL-ID-125727. https://doi.org/10.2172/310887

  24. Debertin K, Helmer RG (1988) Gamma- and X-ray spectrometry with semiconductor detectors. North Holland

    Google Scholar 

  25. Krieger R (1981) Radioactivity of construction materials. Betonw Fertigteil Technik 47:468–475

    CAS  Google Scholar 

  26. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  PubMed  Google Scholar 

  27. Tran DK, Truong Y, Le NS, Nguyen VP, Tran HN (2020) Environmental radioactivity and associated radiological hazards in surface soils in Ho Chi Minh City, Vietnam. Radioanal Nucl Chem 326:1773–1783. https://doi.org/10.1007/s10967-020-07466-1

    Article  CAS  Google Scholar 

  28. Romeo F, Porto P, Mallamaci C, Muscolo A (2021) The relationships between selected soil properties and caesium-137 identify organic carbon, nitrogen and water soluble phenols as indicators of soil erosion processes in different forest stands. J For Res 32:2589–2598. https://doi.org/10.1007/s11676-021-01295-y

    Article  CAS  Google Scholar 

  29. Saleh MA, Ramli AT, Alajerami Y, Aliyu AS (2013) Assessment of environmental 226Ra, 232Th and 40K concentrations in the region of elevated radiation background in Segamat District, Johor, Malaysia. J Environ Radioact 124:130–140. https://doi.org/10.1016/j.jenvrad.2013.04.013

    Article  CAS  PubMed  Google Scholar 

  30. Tela Abba H, Wan Hassan WMS, Saleh MA, Aliyu AS, Ramli AT, Abdulsalam H (2018) Geological influence on the activity concentration of terrestrial radionuclides 226Ra, 232Th and 40K in the Jos Plateau, Nigeria. Isot Environ Health Stud 54(5):522–534. https://doi.org/10.1080/10256016.2018.1474879

    Article  CAS  Google Scholar 

  31. Montes ML, Mercader RC, Taylor MA (2016) Activities of 232Th, 226Ra, 40K, and 137Cs in surface soil and external dose assessment at two zones of Buenos Aires Province, Argentina. Environ Earth Sci 75(4):1–10. https://doi.org/10.1007/s12665-015-5173-1

    Article  CAS  Google Scholar 

  32. Koarashi J, Nishimura S, Atarashi-Andoh M, Muto K, Matsunaga T (2019) A new perspective on the 137Cs retention mechanism in surface soils during the early stage after the Fukushima nuclear accident. Sci Rep 9:7034. https://doi.org/10.1038/s41598-019-43499-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Konopleva I, Klemt E, Konoplev A, Zibold G (2009) Migration and bioavailability of 137Cs in forest soil of southern Germany. J Environ Radioact 100(4):315–321. https://doi.org/10.1016/j.jenvrad.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  34. Vandebroek L, Van Hees M, Delvaux B, Spaargaren O, Thiry Y (2012) Relevance of Radiocaesium Interception Potential (RIP) on a worldwide scale to assess soil vulnerability to 137Cs contamination. J Environ Radioact 104:87–93. https://doi.org/10.1016/j.jenvrad.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  35. Al-Sulaiti H, Nasir T, Al Mugren KS, Alkhomashi N, Al-Dahan N, Al-Dosari M, Bradley DA, Bukhari S, Matthews M, Regan PH, Santawamaitre T, Malain D, Habib A, Al-Dosari H, Al Sadig I, Daar E (2016) Determination of 137Cs activity in soil from Qatar using high-resolution gamma-ray spectrometry. Radiat Phys Chem 127:222–235. https://doi.org/10.1016/j.radphyschem.2016.07.003

    Article  CAS  Google Scholar 

  36. Arapis GD, Karandinos MG (2004) Migration of 137Cs in the soil of sloping semi-natural ecosystems in Northern Greece. J Environ Radioact 77(2):133–142. https://doi.org/10.1016/j.jenvrad.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  37. Dragović S, Onjia A (2006) Classification of soil samples according to their geographic origin using gamma-ray spectrometry and principal component analysis. J Environ Radioact 89(2):150–158. https://doi.org/10.1016/j.jenvrad.2006.05.002

    Article  CAS  PubMed  Google Scholar 

  38. Bramha S, Sahoo SK, Joel ES, Venkatraman B, Mohanty PK, Rath P (2019) Influence of geochemical properties on natural radionuclides in the sediment of Asia’s largest brackish water lagoon, Chilika-East Coast of India: evaluation through geo-statistical applications. Environ Earth Sci 78(23):1–11. https://doi.org/10.1007/s12665-019-8672-7

    Article  CAS  Google Scholar 

  39. Somboon S, Kavasi N, Sahoo SK, Inoue K, Arae H, Tsuruoka H, Shimizu H, Fukushi M (2018) Radiocesium and 40K distribution of river sediments and floodplain depositsin the Fukushima exclusion zone. J Environ Radioact 195:40–53. https://doi.org/10.1016/j.jenvrad.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  40. Rixson L, Stefanus M, Fajar M (2020) Evaluation and assessment of 7 years of radioactivity monitoring data for Th232, Ra226, K40 on surface soil and the impact of the construction of mass rapid transit stations around Pasar Jumat nuclear area. J Phys Conf Ser 1436(1):012041. https://doi.org/10.1088/1742-6596/1436/1/012041

    Article  CAS  Google Scholar 

  41. LovrenčićMikelić I, Oreščanin V, Barišić D (2021) 40K, 226Ra, 232Th, 238U and 137Cs relationships and behaviour in sedimentary rocks and sediments of a karstic coastal area (Kaštela Bay, Croatia) and related rocks and sediments’ differentiation. Environ Sci Pollut Res 28(37):51497–51510. https://doi.org/10.1007/s11356-021-14240-7

    Article  CAS  Google Scholar 

  42. Zeng Q, Brown PH (2000) Soil potassium mobility and uptake by corn under differential soil moisture regimes. Plant Soil 221:121–134. https://doi.org/10.1023/A:1004738414847

    Article  CAS  Google Scholar 

  43. Kumar A, Singhai RK, Rupali JP, Narayanan U, Suresh S, Mishra MK, Ranade AK (2008) Impact of tropical ecosystem on the migrational behavior of K-40, Cs-137, Th-232, U-238 in perennial plants. Water Air Soil Pollut 192:293–302

    Article  CAS  Google Scholar 

  44. Bakar ASA, Hamzah Z, Saat A (2017) Distribution of 137Cs in surface soil of Fraser’s Hill, Pahang, Malaysia. AIP Conf Proc 1799(1):030010. https://doi.org/10.1063/1.4972920

    Article  Google Scholar 

  45. Hien PD, Hiep HT, Quang NH, Huy NQ, Binh NT, Hai PS, Long NQ, Bac VT (2002) Derivation of 137Cs deposition density from measurements of 137Cs inventories in undisturbed soils. J Environ Radioact 62(3):295–303. https://doi.org/10.1016/S0265-931X(02)00012-7

    Article  CAS  PubMed  Google Scholar 

  46. Srisuksawad K, Noipow N, Omanee A, Wiriyakitnateekul W, Chouybudha R, Srimawong P (2015) Spatial distribution of 137Cs in surface soil under different land uses in Chao Phraya watershed: Potential used as sediment source tracing. J Phys Conf Ser 611(1):012026

    Article  Google Scholar 

  47. Lu JG, Huang Y, Li F, Wang L, Li S, Hsia Y (2006) The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. J Environ Radioact 90(2):89–99. https://doi.org/10.1016/j.jenvrad.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  48. Hirose K, Kikawada Y, Igarashi Y, Fujiwara H, Jugder D, Matsumoto Y, Oi T, Nomura M (2017) Plutonium, 137Cs and uranium isotopes in Mongolian surface soils. J Environ Radioact 166:97–103. https://doi.org/10.1016/j.jenvrad.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  49. Altıkulaç A, Turhan Ş, Gümüş H (2016) Activity concentration of terrestrial and anthropogenic radionuclides (226Ra, 222Rn, 232Th, 40K, and 137Cs) in soil samples. Environ Earth Sci 75(1):1–8. https://doi.org/10.1007/s12665-015-4841-5

    Article  CAS  Google Scholar 

  50. Ibikunle SB, Ajayi OS, Arogunjo AM (2013) Effect of geology on soil radioactivity and risks to humans based on data from several towns in Nigeria. Environ Forensics 14(3):240–247. https://doi.org/10.1080/15275922.2013.814175

    Article  CAS  Google Scholar 

  51. Abd El-mageed AI, El-Kamel AH, Abbady A, Harb S, Youssef AMM, Saleh II (2011) Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environments of Juban town in Yemen. Radiat Phys Chem 80(6):710–715. https://doi.org/10.1016/j.radphyschem.2011.02.025

    Article  CAS  Google Scholar 

  52. Kumar A, Joshi VM, Mishra MK, Karpe R, Rout S, Narayanan U, Tripathi RM, Singh J, Kumar S, Hegde AG, Kushwaha HS (2012) Distribution, enrichment and principal component analysis for possible sources of naturally occurring and anthropogenic radionuclides in the agricultural soil of Punjab state. India Radiat Prot Dosim 150(1):71–81. https://doi.org/10.1093/rpd/ncr366

    Article  CAS  Google Scholar 

  53. UNSCEAR (2000) United Nations Scientific Committee on the effects of atomic radiation. Sources and effects of ionizing radiation. Report to the general Assembly, Annex A & B, 1:20–141

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai-Nam Tran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 88 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TN., Bui, VL., Duong, VH. et al. Distribution and characteristics of 137Cs in surface soil in the middle of Laos. J Radioanal Nucl Chem 332, 3661–3673 (2023). https://doi.org/10.1007/s10967-023-09051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09051-8

Keywords

Navigation