Skip to main content
Log in

The development of cyclotron-based radiopharmaceuticals: a comprehensive review of 64Cu and 123I-radiolabeled urea-based small molecule PSMA ligands

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

64Cu and 123I are attracting attention in taking up their role in the development and practical use of PSMA-targeting radiopharmaceuticals. The development of urea-based small molecule PSMA ligands labeled 64Cu and 123I has been progressing steadily with the challenge of obtaining optimal performance as PSMA-targeting radiopharmaceutical for prostate cancer. In this review, the authors provide an overview of recent research projects and future directions for the production of cyclotron-based medical radioisotopes 64Cu and 123I, and their application in the development of urea-based small molecule PSMA ligands labeled 64Cu and 123I as radiopharmaceuticals for prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics. CA Cancer J Clin 71:7–33

    PubMed  Google Scholar 

  2. Ruigrok EAM, Van Weerden WM, Nonnekens J, De Jong M (2019) The future of PSMA-targeted radionuclide therapy: an overview of recent preclinical research. Pharmaceutics 11(11):560

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Neels OC, Kopka K, Liolios C, Afshar-Oromieh A (2021) Radiolabeled PSMA inhibitors. Cancers 13(24):6255

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Chen D, Augusto RDS, Liang J, Qin Z, Liu J, Liu Z (2022) Production review of accelerator-based medical isotopes. Molecules 27(16):5294

    CAS  PubMed  PubMed Central  Google Scholar 

  5. International Atomic Energy Agency (2019) Cyclotron produced radionuclides: physical characteristics and production methods. TRS-468. 468:279

  6. Ziwei L, Yuncheng H, Xiaoyu W, Jiachen Z, Yongfeng W, Qunying H (2019) Production status and technical prospects of medical radioisotope 99 Mo/99m Tc. Nucl Phys Rev 36:170–183

    Google Scholar 

  7. Ming-qi LI, Qi-min D, Zuo-yong C, Mao-liang LI (2013) Production and application of medical radionuclide: status and urgent problems to be resolved in China. J Isot 26:186

    Google Scholar 

  8. Starovoitova VN, Tchelidze L, Wells DP (2014) Production of medical radioisotopes with linear accelerators. Appl Radiat Isot 85:39–44

    CAS  PubMed  Google Scholar 

  9. Kaur CD, Mishra KK, Sahu A, Panik R, Kashyap P, Mishra SP, Kumar A (2020) Theranostics: new era in nuclear medicine and radiopharmaceuticals. Med Isotop IntechOpen. https://doi.org/10.5772/intechopen.91868

    Article  Google Scholar 

  10. Debnath S, Zhou N, McLaughlin M, Rice S, Pillai AK, Hao G, Sun X (2022) PSMA-targeting imaging and theranostic agents—current status and future perspective. Int J Mol Sci 23:1158

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou J, Neale JH, Pomper MG, Kozikowski AP (2015) NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nat Rev Drug Discov 4:1015–1026

    Google Scholar 

  12. Chang SS (2014) Overview of prostate-specific membrane antigen. Rev Urol 6(10):13–18

    Google Scholar 

  13. Zhou Y, Li J, Xu X, Zhao M, Zhang B, Deng S, Wu Y (2019) 64Cu-based radiopharmaceuticals in molecular imaging. Technol Cancer Res Treat 18:1–10

    Google Scholar 

  14. Gutfilen B, Souza SAL, Valentini G (2018) Copper-64: a real theranostic agent. Drug Des Devel Ther 12:235–3245

    Google Scholar 

  15. International Atomic Energy Agency (2016) Cyclotron produced radionuclides: emerging positron emitters for medical applications: 64Cu and 124I, IAEA radioisotopes and radiopharmaceuticals reports no. 1, IAEA, Vienna

  16. Chakravarty R, Chakraborty S, Dash A (2016) 64Cu2+ ions as PET probe: an emerging paradigm in molecular imaging of cancer. Mol Pharm 13(11):3601–3612

    CAS  PubMed  Google Scholar 

  17. Hueting R (2014) Radiocopper for the imaging of copper metabolism. J Labelled Compd Radiopharm 57(4):231–238

    CAS  Google Scholar 

  18. Zhou M, Zhao J, Tian M, Song S, Zhang R, Gutpa S, Tan D, Shen H, Ferrari M, Li C (2015) Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. Nanoscale 7(46):19438–19447

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Adonai N, Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, McCarthy T, McCarthy DW, Gambhir SS (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci USA 99(5):3030–3035

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bokhari TH, Mushtaq A, Khan IU (2010) Production of low and high specific activity 64Cu in a reactor. J Radioanal Nucl Chem 284(2):265–271

    CAS  Google Scholar 

  21. Karimi Z, Sadeghi M, Ezati A (2019) Modeling and experimental production yield of 64Cu with natCu and natCu-NPS in Tehran research reactor. Nucl Eng Technol 51:269–274

    CAS  Google Scholar 

  22. Wadas TJ, Wong EH, Weisman GR, Anderson CJ (2010) Coordinating radiometals of copper, gallium, indium, yttrium and zirconium for PET and SPECT imaging of disease. Chem Rev 110(5):2858–2902

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vimalnath KV, Rajeswari A, Jagadeesan KC, Viju C, Joshi PV, Venkatesh M (2012) Studies on the production feasibility of 64Cu by (n, p) reactions on Zn targets in Dhruva research reactor. J Radioanal Nucl Chem 294(1):43–47

    CAS  Google Scholar 

  24. Rajeswari A, Vimalnath KV, Viju C, Sharad PL, Jagadeesan KC, Joshi PV, Venkatesh M (2010) Extended abstracts of the plenary lectures and contributed papers of the second international conference on application of radiotracers in chemical. Environ Biol Sci (ARCEBS-10) 3:86–88

    Google Scholar 

  25. Blaser JP, Böhm F, Marmier P, Scherrer P (1951) Anregungsfunctionen und Wirkungsquerschnitte der (p, n)Reaktion (II). Helv Phys Acta 24:441

    CAS  Google Scholar 

  26. Guzhovskij BJ, Borkin IM, Zvenigorodskij AG, Rudnev VS, Solodovnikov AP, Trusillo SV (1969) Isospin mixing of isobar analog resonances observed for the 59,61,63,65Cu nuclei. Izv Ross Akad Nauk Ser Fiz 33:129

    Google Scholar 

  27. Tanaka S, Furukawa M (1959) Excitation functions for (p, n) reactions with titanium, vanadium, chromium, iron and nickel up to 14 MeV. J Phys Soc Jpn 14:1269

    CAS  Google Scholar 

  28. Sevior ME, Mitchell LW, Anderson MR, Tingwell CW, Sargood DG (1983) Absolute cross sections of proton induced reactions on 65Cu, 64Ni, 63Cu. Austr J Phys 36:463

    CAS  Google Scholar 

  29. Szelecsényi F, Blessing G, Qaim SM (1993) Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl Radiat Isot 44:575–580

    Google Scholar 

  30. Avila-Rodriguez MA, Nye JA, Nickles RJ (2007) Simultaneous production of high specific activity 64Cu and 61Cu with 11.4 MeV protons on enriched 64Ni nuclei. App Radiat Isot 65:1115–1120

    CAS  Google Scholar 

  31. Rabeles AA, Van den Winkel P, Hermanne A, Tárkányi FT (2009) New measurement and evaluation of the excitation function of 64Ni(p, n) reaction for the production of 64Cu. Nucl Inst Meth Phys Res B267:457–461

    Google Scholar 

  32. Uddin MdS, Chakraborty AK, Spellerberg S, Shariff MdA, Das S, Rashid MdA, Spahn I, Qaim SM (2016) Experimental determination of proton induced reaction cross sections on natNi near threshold. Radioch Acta 104:305–314

    CAS  Google Scholar 

  33. Adel D, Mohamed GY, Yousef Z, El Wahab MA, Ditrói F, Takács S, Al-abyad M (2020) Experimental investigation and theoretical evaluation of proton induced nuclear reactions on nickel. Appl Radiat Isot 159:109094

    CAS  PubMed  Google Scholar 

  34. Hermanne A, Tárkányi FT, Ignatyuk AV, Takács S, Capote R (2021) Upgrade of IAEA recommended data of selected nuclear reactions for production of PET and SPECT isotopes. Nucl Data Sheets 173:285–308

    CAS  Google Scholar 

  35. Hermanne A, Tárkányi FT, Takács S, Kovalev SF, Ignatyuk AV (2007) Activation cross sections of the 64Ni(d,2n) reaction for the production of the medical radionuclide 64Cu. Nucl Inst Meth Phys Res B258:308–312

    Google Scholar 

  36. Daraban L, Rabeles RA, Hermanne A (2009) Study of the excitation function for the deuteron induced reaction on 64Ni(d,2n) for the production of the medical radioisotope 64Cu. Appl Radiat Isot 67:506–510

    CAS  PubMed  Google Scholar 

  37. Levkovskij VN (1991) Activation cross section nuclides of average masses (A = 40–100) by protons and alpha-particles with average energies (E = 10–50 MeV). INTER-VESTI, Moscow

    Google Scholar 

  38. Szelecsényi F, Steyn GF, Kovács Z, Vermeulen C, van der Meulen NP, Dolley SG, van der Walt TN, Suzuki K, Mukai K (2005) Investigation of the 66Zn(p,2pn)64Cu and 68Zn(p, x)64Cu nuclear processes up to 100 MeV: production of 64Cu. Nucl Inst Meth Phys Res B240:625–637

    Google Scholar 

  39. Williams DC, Irvine JW Jr (1963) Nuclear excitation functions and thick-target yields: Zn+d and 40Ar(d, α). Phys Rev 130:265

    CAS  Google Scholar 

  40. Tárkányi FT, Takács S, Ditrói F, Hermanne A, Sonck M, Shubin Yu (2004) Excitation functions of deuteron induced nuclear reactions on natural zinc up to 50 MeV. Nucl Inst Meth Phys Res B217:531–550

    Google Scholar 

  41. Groppi F, Bonardi ML, Birattari C, Gini L, Mainardi C, Menapace E, Abbas K, Holzwarth U, Stroosnijder MF (2004) Thin-target excitation functions and optimisation of NCA 64Cu and 66,67Ga production by deuteron induced nuclear reactions on natural zinc target, for radiometabolic therapy and for PET. Nucl Inst Meth Phys Res B213:373–377

    Google Scholar 

  42. Khandaker MU, Haba H, Murakami M, Otuka N (2015) Production cross-sections of long-lived radionuclides in deuteron-induced reactions on natural zinc up to 23 MeV. Nucl Inst Meth Phys Res B346:8–16

    Google Scholar 

  43. Ŝimeĉková E, Bem P, Mrazek J, Ŝtefánik M, Behal R, Gladolev V (2017) Proton and deuteron activation measurements at the NPI and future plans in SPIRAL2/NFS. EPJ Web of Conf 146:11034

    Google Scholar 

  44. Mushtaq A (2010) Reactors are indispensable for radioisotope production. Ann Nucl Med 24:759–760

    PubMed  Google Scholar 

  45. Thieme S, Walther M, Pietzsch HJ, Henniger J, Preusche S, Mäding P, Steinbach J (2012) Module-assisted preparation of 64Cu with high specific activity. Appl Radiat Isot 70:602–608

    CAS  PubMed  Google Scholar 

  46. van der Meulen NP, Hasler R, Blanc A, Farkas R, Benešová M, Talip Z, Müller C, Schibli R (2019) Implementation of a new separation method to produce qualitatively improved 64Cu. J Label Compd Radiopharm 62:460–470

    Google Scholar 

  47. Elomaa VV, Jurttila J, Rajander J, Solin O (2014) Automation of 64Cu production at Turku PET centre. Appl Radiat Isot 89:74–78

    CAS  PubMed  Google Scholar 

  48. Obata A, Kasamatsu S, McCarthy DW, Welch MJ, Saji H, Yonekura Y, Fujibayashi Y (2003) Production of therapeutic quantities of 64Cu using a 12 MeV cyclotron. Nucl Med Biol 30:535–539

    CAS  PubMed  Google Scholar 

  49. Zeisler SK, Pavan RA, Orzechowski J, Langlois R, Rodrigue S, Van Lier JE (2003) Production of 64Cu on the Sherbrooke TR-PET cyclotron. J Radioanal Nucl Chem 257:175–177

    CAS  Google Scholar 

  50. Jeffery CM, Smith SV, Asad AH, Chan S, Price RI (2012) Routine production of copper-64 using 11.7 MeV protons. AIP Conf Proc 1509:84–90

    CAS  Google Scholar 

  51. Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Fukumura T, Zhang MR (2016) Efficient preparation of high-quality 64Cu for routine use. Nucl Med Biol 43(11):685–691

    CAS  PubMed  Google Scholar 

  52. Xie Q, Zhu H, Wang F, Meng X, Ren Q, Xia C, Yang Z (2017) Establishing reliable Cu-64 production process: from target plating to molecular specific tumor. Molecules 22(4):641

    PubMed  PubMed Central  Google Scholar 

  53. Rayyes Al AH, Ailouti Y (2013) Production and quality control of 64Cu from high current Ni target. World J Nucl Sci Technol 3:72–77

    Google Scholar 

  54. Jauregui-Osoro M, De Robertis S, Halsted P, Gould SM, Yu Z, Paul RL, Marsden PK, Gee AD, Fenwick A, Blower PJ (2021) Production of copper-64 using a hospital cyclotron: targetry, purification and quality analysis. Nucl Med Commun 42(9):1024–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ometáková J, Rajec P, Csiba V, Leporis M, Štefečka M, Vlk P, Galamboš M, Rosskopfová O (2012) Automated production of 64Cu prepared by 18 MeV cyclotron. J Radioanal Nucl Chem 293(1):217–222

    Google Scholar 

  56. Van So L, Pellegrini P, Katsifis A, Howse J, Greguric I (2008) Radiochemical separation and quality assessment for the 68Zn target based 64Cu radioisotope production. J Radioanal Nucl Chem 277(2):451–466

    CAS  Google Scholar 

  57. Hasnowo LA, Yusubov MS (2022) The future of PSMA-targeting 64Cu-radiopharmaceuticals: a short review of recent preclinical research. In: Proceedings of II International Scientific and Practical Conference, Tomsk, Russia, 26–28 April 2022, Tomsk Polytechnic University, Russia, pp 843–847

  58. Benešová M, Schäfer M, Bauder-Wüst U, Afshar-Oromieh A, Kratochwil C, Mier W, Haberkorn U, Kopka K, Eder M (2015) Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med 56:914–920

    PubMed  Google Scholar 

  59. Ma MT, Donnelly PS (2011) Peptide targeted copper-64 radiopharmaceuticals. Curr Top Med Chem 11(5):500–520

    CAS  PubMed  Google Scholar 

  60. Bass LA, Wang M, Welch MJ, Anderson CJ (2000) In vivo tran- schelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjug Chem 11:527–532

    CAS  PubMed  Google Scholar 

  61. Mirick GR, O’Donnell RT, De Nardo SJ, Shen S, Meares CF, De Nardo GL (1999) Transfer of copper from a chelated 67Cu-antibody conjugate to ceruloplasmin in lymphoma patients. Nucl Med Biol 26:841–845

    CAS  PubMed  Google Scholar 

  62. Rogers BE, Anderson CJ, Connett JM, Guo LW, Edwards WB, Sherman ELC, Zinn KR, Welch MJ (1996) Comparison of four bifunctional chelates for radiolabeling monoclonal antibodies with copper radioisotopes: Biodistribution and metabolism. Bioconjugate Chem 7(4):511–522

    CAS  Google Scholar 

  63. Bailey GA, Price EW, Zeglis BM, Ferreira CL, Boros E, Lacasse MJ, Patrick BO, Lewis JS, Adam MJ, Orvig C (2012) H2azapa: a Versatile acyclic multifunctional chelator for 67Ga, 64Cu, 111In, and 177Lu. Inorg Chem 51(22):12575–12589

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ferreira CL, Yapp DT, Lamsa E, Gleave M, Bensimon C, Jurek P, Kiefer GE (2008) Evaluation of novel bifunctional chelates for development of Cu-64 based radiopharmaceuticals. Nucl Med Biol 35:875–882

    CAS  PubMed  Google Scholar 

  65. Woodin KS, Heroux KJ, Boswell CA, Wong EH, Weisman GR, Niu WSA, Tomellini ACJ, Zakharov LN, Rheingold AL (2005) Kinetic inertness and electrochemical behavior of copper(II) tetraazamacrocyclic complexes: possible implications for in vivo stability. Eu J Inorg Chem 23:4829–4833

    Google Scholar 

  66. Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL, Anderson CJ (2004) Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem 47:1465–1474

    CAS  PubMed  Google Scholar 

  67. Anderson CJ, Dehdashti F, Cutler PD, Schwarz SW, Laforest R, Bass LA, Lewis JS, McCarthy DW (2001) 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 42:213–221

    CAS  PubMed  Google Scholar 

  68. Clarke ET, Martell AE (1991) Stabilities of the alkaline earth and divalent transition metal complexes of the tetraazamacrocyclic tetraacetic acid ligands. Inorg Chim Acta 190(1):27–36

    CAS  Google Scholar 

  69. Hausner SH, Kukis DL, Gagnon MKJ, Stanecki CE, Ferdani R, Marshall JF, Anderson CJ, Sutcliffe JL (2009) Evaluation of [64Cu]Cu-DOTA and [64Cu]Cu-CB-TE2A chelates for targeted positron emission tomography with an αvβ6-specific peptide. Mol Imaging 8:111–121

    CAS  PubMed  Google Scholar 

  70. Di Bartolo N, Sargeson AM, Smith SV (2006) New 64Cu PET imaging agents for personalised medicine and drug development using the hexa-aza cage. SarAr Org Biomol Chem 4:3350–3357

    PubMed  Google Scholar 

  71. Di Bartolo NM, Sargeson AM, Donlevy TM, Smith SV (2001) Synthesis of a new cage ligand, SarAr, and its complexation with selected transition metal ions for potential use in radioimaging. J Chem Soc Dalton Trans 15:2303–2309

    Google Scholar 

  72. Zhang Y, Hong H, Engle JW, Bean J, Yang Y, Leigh BR, Barnhart TE, Cai W (2011) Positron emission tomography imaging of CD105 expression with a 64Cu-labeled monoclonal antibody: NOTA is superior to DOTA. PLoS ONE 6:e28005

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bevilacqua A, Gelb RI, Hebard WB, Zompa LJ (1987) Equilibrium and thermodynamic study of the aqueous complexation of 1,4,7-triazacyclononane-N, N′, N″-triacetic acid with protons, alkaline-earth-metal cations, and copper(II). Inorg Chem 26:2699–2706

    CAS  Google Scholar 

  74. Mazière B, Stulzaft O, Verret JM, Comar D, Syrota A (1983) [55Co]- and [64Cu]DTPA: new radiopharmaceuticals for quantitative tomocisternography. Int J Appl Radiat Isot 34(3):595–601

    PubMed  Google Scholar 

  75. Panizzi P, Nahrendorf M, Figueiredo JL, Panizzi J, Marinelli B, Iwamoto Y, Keliher E, Maddur AA, Waterman P, Kroh HK, Leuschner F, Aikawa E, Swirski FK, Pittet MJ, Hackeng TM, Fuentes-Prior P, Schneewind O, Bock PE, Weissleder R (2011) In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med 17:1142–1146

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Boros E, Cawthray JF, Ferreira CL, Patrick BO, Adam MJ, Orvig C (2012) Evaluation of the H2dedpa scaffold and its cRGDyK conjugates for labeling with 64Cu. Inorg Chem 51(11):6279–6284

    CAS  PubMed  Google Scholar 

  77. dos Santos JC, Beijer B, Bauder-Wüst U, Schäfer M, Leotta K, Eder M, Benešová M, Kleist C, Giesel F, Kratochwil C, Kopka K, Haberkorn U, Mier W (2019) Development of novel PSMA ligands for imaging and therapy with copper isotopes. J Nucl Med 61(1):70–79

    Google Scholar 

  78. Ait-Mohand S, Fournier P, Dumulon-Perreault VR, Kiefer GE, Jurek P, Ferreira CL, Be’nard FO, Gue’rin B (2011) Evaluation of 64Cu-labeled bifunctional chelate-bombesin conjugates. Bioconjug Chem 22(8):1729–1735

    CAS  PubMed  Google Scholar 

  79. Liu T, Liu C, Zhang Z, Zhang N, Guo X, Xia L, Jiang J, Xie Q, Yan K, Rowe SP, Zhu H, Yang Z (2021) 64Cu-PSMA-BCH: a new radiotracer for delayed PET imaging of prostate cancer. Eur J Nucl Med Mol Imaging 48(13):4508–4516

    CAS  PubMed  Google Scholar 

  80. Wustemann T, Bauder-Wust U, Schafer M, Eder M, Benesova M, Leotta K, Kratochwil C, Haberkorn U, Kopka K, Mier W (2016) Design of internalizing PSMA-specific glu-ureido-based radiotherapeuticals. Theranostics 6:1085–1095

    PubMed  PubMed Central  Google Scholar 

  81. Benesova M, Bauder-Wust U, Schafer M, Klika KD, Mier W, Haberkorn U, Kopka K, Eder M (2016) Linker modification strategies to control. The prostate-specific membrane antigen (PSMA)-targeting and pharmacokinetic properties of DOTA-conjugated PSMA inhibitors. J Med Chem 59:1761–1775

    CAS  PubMed  Google Scholar 

  82. Kuo HT, Pan J, Zhang Z, Lau J, Merkens H, Zhang C, Colpo N, Lin KS, Bénard F (2018) Effects of linker modification on tumor-to-kidney contrast of 68Ga-labeled PSMA-targeted imaging probes. Mol Pharm 15:3502–3511

    CAS  PubMed  Google Scholar 

  83. Robu S, Schmidt A, Eiber M, Schottelius M, Günther T, Hooshyar Yousefi B, Schwaiger M, Wester HJ (2018) Synthesis and preclinical evaluation of novel 18F-labeled Glu-urea-Glu-based PSMA inhibitors for prostate cancer imaging: a comparison with 18F-DCFPyl and 18F-PSMA-1007. EJNMMI Res 8(1):30. https://doi.org/10.1186/s13550-018-0382-8

    PubMed  PubMed Central  Google Scholar 

  84. Umbricht CA, Benešová M, Hasler R, Schibli R, van der Meulen NP, Muller C (2018) Design and preclinical evaluation of an albumin-binding PSMA ligand for 64Cu-based PET imaging. Mol Pharm 15(12):5556–5564

    CAS  PubMed  Google Scholar 

  85. Ren Y, Liu T, Liu C, Guo X, Wang F, Zhu H, Yang Z (2022) An albumin-binding PSMA ligand with higher tumor accumulation for PET imaging of prostate cancer. Pharmaceuticals 15(5):513

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sevcenco S, Klingler HC, Eredics K, Friedl A, Schneeweiss J, Knoll P, Kunit T, Lusuardi L, Mirzaei S (2018) Application of Cu-64-NODAGA-PSMA PET in prostate cancer. Adv Ther 35:779–784

    CAS  PubMed  Google Scholar 

  87. Grubmuller B, Baum RP, Capasso E, Singh A, Ahmadi Y, Knoll P, Floth A, Righi S, Zandieh S, Meleddu C, Shariat SF, Klingler HC, Mirzaei S (2016) 64Cu-PSMA-617 PET/CT imaging of prostate adenocarcinoma: First in-human studies. Cancer Biother Radiopharm 31:277–286

    PubMed  Google Scholar 

  88. Clarity Pharmaceuticals Ltd. 64Cu-SAR-bisPSMA and 67Cu-SAR-bisPSMA for Identification and Treatment of PSMA-Expressing Metastatic Castrate Resistant Prostate Cancer (SECuRE) (SECuRE). Available online: https://clinicaltrials.gov/ct2/show/NCT04868604. Accessed on 22 Mar 2023

  89. Curium US LLC. Cu-64-PSMA-I&T Positron Emission Tomography (PET) Imaging of Metastatic PSMA Positive Lesions in Men With Prostate Cancer. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05653856. Accessed on 22 Mar 2023

  90. Canbula D, Canbula B (2023) Cross-Section calculations for the production of 123I and 124I radioisotopes via (p, n) and (p,2n) reactions using collective nuclear level density model. Nucl Technol. https://doi.org/10.1080/00295450.2022.2163802

    Article  Google Scholar 

  91. International Commission on Radiological Protection (ICRP) (1987) Radiation dose to patients from radiopharmaceuticals. Pergamon Press: publication, Oxford, p 53

  92. Zaitseva NG, Deptula C, Knotek O, Kim SK, Mikolaevsky S, Mikecz P, Rurarz E, Khalkin VA, Konov VA, Popinenkova LM (1991) Cross sections for the 100 MeV proton-induced nuclear reactions and yields of some radionuclides used in nuclear medicine. Radioch Acta 54:57–72

    CAS  Google Scholar 

  93. Hermanne A, Tárkányi F, Takács S, Adam-Rebeles R, Ignatyuk A, Spellerberg S, Schweikert R (2011) Limitation of the long-lived 121Te contaminant in production of 123I through the 124Xe(p, x) route. Appl Radiat Isot 69:358–368

    CAS  PubMed  Google Scholar 

  94. Scholten B, Qaim SM, Stocklin G (1989) Production of 123I at a low energy cyclotron. J Label Compd Radiopharm 26:175–176

    Google Scholar 

  95. Silvester DJ, Sugden J, Walson IA (1969) Preparation of Iodine-123 by α-particle bombardment of natural antimony. Radiochem Radioanal Lett 2(1):17–20

    CAS  Google Scholar 

  96. Hassan KF, Qaim SM, Saleh ZA, Coenen HH (2006) Alpha-particle induced reactions on natSb and 121Sb with particular reference to the production of the medically interesting radionuclide 124I. Appl Radiat Isot 64:101–109

    CAS  PubMed  Google Scholar 

  97. Paans AMJ, Vaalburg W, van Herk G, Woldring MG (1976) Excitation function for the production of I-123 via the I-127(p,5n)Xe-123 reaction. App Radiat Isot 27:465–467

    CAS  Google Scholar 

  98. Diksic M, Yaffe L (1977) A study of I-127(p, xn) and I-127(p, pxn) reactions with special emphasis on production of Xe-123. J Inorg Nucl Chem 39:1299–1302

    CAS  Google Scholar 

  99. Lagunas-Solar MC, Carvacho OF, Liu B, Jin Y, Sun ZX (1986) Cyclotron production of high-purity I-123. A revision of excitation functions, thin target and cumulative yields for I-127(p, xn) reactions. App Radiat Isot 37:823–833

    CAS  Google Scholar 

  100. Sakamoto K, Dohniwa M, Okada K (1985) Excitation functions for (p, xn) and (p, pxn) reactions on natural, 79+81Br, 85+87Rb, 127I and 133Cs up to Ep = 52 MeV. App Radiat Isot 36:481–488

    CAS  Google Scholar 

  101. Suzuki K (1986) Production of pure 123I by the 127I(p,5n)123Xe→123I-reaction. Radioisot 35(5):235–241

    CAS  Google Scholar 

  102. Syme DB, Wood E, Blair IM, Kew I, Perry M, Cooper P (1978) Yield curves for cyclotron production of I-123 and I-125 and I-121 by I-127(p, xn)-reactions. Int J App Radiat Isot 29:29–38

    CAS  Google Scholar 

  103. Kurenkov NV, Malinin AB, Sebyakin AA, Venikov NI (1989) Excitation functions of proton-induced nuclear reactions on 124Xe: production of 123I. J Radioanal Nucl Chem 135:39–50

    CAS  Google Scholar 

  104. Tárkányi FT, Ignatyuk AV, Hermanne A, Capote R, Carlson BV, Engle JW, Kellett MA, Kibedi T, Kim GN, Kondev FG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takács S, Verpelli M (2019) Recommended nuclear data for medical radioisotope production: diagnostic gamma emitters. J Radioanal Nucl Chem 319(2):487–531

    Google Scholar 

  105. Qaim SM (1986) Recent developments in the production of 18F, 75,76,77Br and 123I. Int J Rad Appl Instrum A 37(8):803–810

    CAS  Google Scholar 

  106. Tárkányi F, Qaim SM, Stocklin G, Sajjad M, Lambrecht RM, Schweickert H (1991) Excitation functions of (p,2n) and (p, pn) reactions and differential and integral yields of 123I in proton induced nuclear reactions on highly enriched 124Xe. Appl Radiat Isot 42:221–228

    Google Scholar 

  107. Mahunka I, Ando L, Mikecz P, Tcheltsov AN, Suvorov IA (1996) Iodine-123 production at a small cyclotron for medical use. J Radioanal Nucl Chem Lett 213:135–142

    CAS  Google Scholar 

  108. Scholten B, Qaim SM, Stocklin G (1989) Excitation functions of proton induced nuclear reactions on natural tellurium and enriched 123Te: production of 123I via the 123Te(p, n)123I-process at a low-energy cyclotron. Int J Radiat Appl Instrum Part A Appl Radiat Isotop 40:127–132

    CAS  Google Scholar 

  109. The International Atomic Energy Agency, IAEA reference data for charged-particle reactions, updated 2018–2021, www.nds.iaea.org/medportal/1 (Accessed 5 Jan 2021).

  110. Kondo K, Lambrecht RM, Wolf AP (1977) 123I production for radiopharmaceuticals–XX: excitation functions of the 124Te(p,2n)123I and 124Te(p, n)124I reactions and the effect of target enrichment on radionuclidic purity. Int J Appl Radiat Isot 28:395–401

    CAS  PubMed  Google Scholar 

  111. Michael H, Rosezin H, Apelt H, Blessing G, Knieper J, Qaim SM (1981) Some technical improvements in the production of 123I via the 124Te(p,2n) 123I reaction at a compact cyclotron. Int J Appl Radiat Isot 32(8):581–587

    CAS  Google Scholar 

  112. Schlyer DJ (2001) Production of radioactive iodine. Technical meeting of project counterparts on cyclotron production of iodine 123. Institute of Nuclear and Energy Research, Sao Paulo

    Google Scholar 

  113. Zaidi JH, Qaim SM, Stöcklin G (1983) Excitation functions of deuteron induced nuclear reactions on natural tellurium and enriched 122Te: production of 123I via the 122Te(d, n)123I-process. Int J Appl Radiat Isot 34(10):1425–1430

    CAS  Google Scholar 

  114. Takács S, Azzam A, Sonck M, Szelecsényi F, Kovács Z, Hermanne A, Tárkányi F (1999) Excitation function of 122Te(d, n)123I nuclear reaction: production of 123I at a low energy cyclotron. Appl Radiat Isot 50(3):535–540

    Google Scholar 

  115. Koning AJ, Rochman D, Sublet J, Dzysiuk N, Fleming M, van der Marck S (2019) TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl Data Sheets 155:1–55

    CAS  Google Scholar 

  116. Skuridin VS, Garapatski A, Slamkulov I, Semenov A, Ermakova Y (2015) Thermal desorption of Iodine-123 from Tellurium-122 oxide irradiated by deuterons. Adv Mater Res 1084:593–597

    CAS  Google Scholar 

  117. Lambrecht RM, Ritter E, Becker R, Wolf AP (1977) Cyclotron isotopes and radiopharmaceuticals, XXI: Fabrication of 122Te–Au targets for isotope production. Int J Appl Radiat Isot 28:567–571

    CAS  Google Scholar 

  118. Lapolli AL, Barcellos H, Matsuda H, Sumiya LCA (2017) A new 124Xe irradiation system for 123I routine production at the 30 MeV IPEN-CNEN/SP cyclotron. In: Proceedings of the 2017 International Nuclear Atlantic Conference (INAC), Belo Horizonte, MG, Brazil, October 22–27, 2017, Associação Brasileira De Energia Nuclear – ABEN, Brazil

  119. Godart J, Barat JL, Menthe A (1978) Beam collection of 123Xe for carrier-free 123I production. Int J Appl Radiat Isot 28:967–969

    Google Scholar 

  120. Cuninghame JG, Morris B, Nichols AL, Taylor NK (1976) Large scale production of 123I from a flowing liquid target using the (p,5n) reaction. Int J Appl Radiat Isot 27:597–603

    CAS  Google Scholar 

  121. Firouzbakht ML, Schlyer DJ, Wolf AP (1995) ‘Failsafe’ gas target for the production of I-123 from Xe-124. In: Proceedings of the Sixth Workshop on Targetry and Target Chemistry, 17–19 August, Vancouver, BC, Canada, pp 78–81

  122. Acerbi E, Birattari C, Castiglioni M, Resmini F (1975) Production of 123I for medical purposes at the Milan AVF cyclotron. Int J Appl Radiat Isot 26:741–747

    CAS  Google Scholar 

  123. Lassen NA (1996) A reappraisal of the relative merits of SPET and PET in the quantitation of neuroreceptors: the advantage of a longer half-life! Eur J Nucl Med 23(1):1–4

    CAS  PubMed  Google Scholar 

  124. Eersels JLH, Travis MJ, Herscheid JDM (2005) Manufacturing I-123-labelled radiopharmaceuticals. Pitfalls and solutions. J Label Compd Radiopharm 48(4):241–257

    CAS  Google Scholar 

  125. Tolmachev V, Orlova A, Lundqvist H (2005) Approaches to improve cellular retention of radiohalogen labels delivered by internalising tumour-targeting proteins and peptides. Curr Med Chem 10(22):2447–2460

    Google Scholar 

  126. Zalutsky MR, Garg PK, Narula AS (1990) Labeling monoclonal antibodies with halogen nuclides. Acta Radiol Suppl 374:141–145

    CAS  PubMed  Google Scholar 

  127. Petrov SA, Yusubov MS, Beloglazkina EK, Nenajdenko VG (2022) Synthesis of radioiodinated compounds. Classical approaches and achievements of recent years. Int J Mol Sci 23(22):13789

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Olafsen T, Bruland OS, Zalutsky MR, Sandlie I (1996) Abundant tyrosine residues in the antigen binding site in anti-osteosarcoma monoclonal antibodies TP-1 and TP-3: application to radiolabeling. Acta Oncol 35:297–301

    CAS  PubMed  Google Scholar 

  129. Lindegren S, Frost S, Bäck T, Haglund E, Elgqvist J, Jensen H (2008) Direct procedure for the production of 211At-labeled antibodies with an ε-lysyl-3-(trimethylstannyl)benzamide immunoconjugate. J Nucl Med 49(9):1537–1545

    CAS  PubMed  Google Scholar 

  130. Wilbur DS, Chyan MK, Hamlin DK, Vessella RL, Wedge TJ, Hawthorne MF (2007) Reagents for astatination of biomolecules. 2. Conjugation of anionic boron cage pendant groups to a protein provides a method for direct labeling that is stable to in vivo deastatination. Bioconjugate Chem 18(4):1226–1240

    CAS  Google Scholar 

  131. Maresca KP, Hillier SM (2009) A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem 52(2):347–357

    CAS  PubMed  Google Scholar 

  132. Hillier SM, Maresca KP, Femia FJ, Marquis JC, Foss CA, Nguyen N, Zimmerman CN, Barrett JA, Eckelman WC, Pomper MG, Joyal JL, Babich JW (2009) Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res 69(17):6932–6940

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Hillier SM, Kern AM, Maresca KP, Marquis JC, Eckelman WC, Joyal JL, Babich JW (2011) 123I-MIP-1072, a small-molecule inhibitor of prostate-specific membrane antigen, is effective at monitoring tumor response to taxane therapy. J Nucl Med 52(7):1087–1093

    CAS  PubMed  Google Scholar 

  134. Barrett JA, Coleman RE, Goldsmith SJ, Vallabhajosula S, Petry NA, Cho S, Armor T, Stubbs JB, Maresca KP, Stabin MG, Joyal JL, Eckelman WC, Babich JW (2013) First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med 54(3):380–387

    CAS  PubMed  Google Scholar 

  135. Vahidfar N, Fallahpoor M, Farzanehfar S, Divband G, Ahmadzadehfar H (2019) Historical review of pharmacological development and dosimetry of PSMA-based theranostics for prostate cancer. J Radioanal Nucl Chem 322(2):237–248

    CAS  Google Scholar 

  136. The National Center for Advancing Translational Sciences. Inxight Drugs: MIP-1095 I-123, https://drugs.ncats.io/drug/HD4940602J. Accessed on 15 Feb 2023

  137. Chen Y, Foss CA, Byun Y, Nimmagadda S, Pullambhatla M, Fox JJ, Castanares M, Lupold SE, Babich JW, Mease RC, Pomper MG (2008) Radiohalogenated prostate-specific membrane antigen (PSMA)-based ureas as imaging agents for prostate cancer. J Nucl Med 51(24):7933–7943

    CAS  Google Scholar 

  138. Kiess AP, Minn I, Chen Y, Hobbs R, Sgouros G, Mease RC, Pullambhatla M, Shen CJ, Foss CA, Pomper MG (2015) Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen. J Nucl Med 56(9):1401–1407

    CAS  PubMed  Google Scholar 

  139. Keam SJ (2021) Piflufolastat F 18: diagnostic first approval. Mol Diagn Ther 25(5):647–656

    CAS  PubMed  Google Scholar 

  140. US Food & Drug Administration. FDA approves second PSMA- targeted PET imaging drug for men with prostate cancer [media release]. https://www.fda.gov/. Accessed 15 Feb 2023

  141. Cardinale J (2017) 18-Tagged inhibitors of prostate specific membrane antigen (PSMA) and their use as imaging agents for prostate cancer. World Intellectual Property Organization, WO 2017/0504907 A1, 6 April

  142. Olivier P, Giraudet AL, Skanjeti A, Merlin C, Weinmann P, Rudolph I, Hoepping A, Gauthé M (2022) Phase III study of 18 F-PSMA-1007 versus 18 F-fluorocholine PET/CT for localization of prostate cancer biochemical recurrence: a prospective, randomized, cross-over, multicenter study. J Nucl Med 64(2):579

    PubMed  Google Scholar 

  143. Mason NS, Mathis CA (2005) Radiohalogens for PET imaging. In: Bailey DL, Townsend DW, Valk PE, Maisey MN (eds) Positron emission tomography. Springer, London, pp 203–222

    Google Scholar 

  144. Bolton AE, Hunter WM (1973) The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J 133:529–538

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Russell J, O’Donoghue JA, Finn R, Koziorowski J, Ruan S, Humm JL, Ling CC (2002) Iodination of annexin V for imaging apoptosis. J Nucl Med 43:671–677

    CAS  PubMed  Google Scholar 

  146. Zalutsky MR, Noska MA, Colapinto EV, Garg PK, Bigner DD (1989) Enhanced tumor localization and in vivo stability of a monoclonal antibody radioiodinated using N-succinimidyl 3-(tri-n-butylstannyl)benzoate. Cancer Res 49:5543–5549

    CAS  PubMed  Google Scholar 

  147. Zalutsky MR, Narula AS (1988) Radiohalogenation of a monoclonal antibody using an N-succinimidyl 3-(tri-n-butylstannyl)benzoate intermediate. Cancer Res 48:1446–1450

    CAS  PubMed  Google Scholar 

  148. Zalutsky MR, Narula AS (1987) A method for the radiohalogenation of proteins resulting in decreased thyroid uptake of radioiodine. Int J Rad Appl Instrum A 38:1051–1055

    CAS  PubMed  Google Scholar 

  149. Vaidyanathan G, Zalutsky MR (1990) Radioiodination of antibodies via N-succinimidyl 2,4-dimethoxy-3-(trialkylstannyl)benzoates. Bioconjug Chem 1:387–393

    CAS  PubMed  Google Scholar 

  150. Wilbur DS, Hadley SW, Hylarides MD, Abrams PG, Beaumier PA, Morgan AC, Reno JM, Fritzberg AR (1989) Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer. J Nucl Med 30(2):216–226

    CAS  PubMed  Google Scholar 

  151. Garg S, Garg PK, Zalutsky MR (1991) N-Succinimidyl 5-(trialkylstannyl)-3-pyridinecarboxylates: a new class of reagents for protein radioiodination. Bioconjug Chem 2:50–56

    CAS  PubMed  Google Scholar 

  152. Khawli LA, Van Den Abbeele AD, Kassis AI (1992) N-(m-[125I]iodophenyl)maleimide: an agent for high yield radiolabeling of antibodies. Int J Radiat Appl Instrum Part B Nucl Med Biol 19:289–295

    CAS  Google Scholar 

  153. Vaidyanathan G, Zalutsky MR (2007) Synthesis of N-succinimidyl 4-guanidinomethyl-3-[*I]iodobenzoate: a radio-iodination agent for labeling internalizing proteins and peptides. Nat Protoc 2:282–286

    CAS  PubMed  Google Scholar 

Download references

Funding

This submitted work was supported by TPU development program Priority 2030 (Priority-2030-NIP/IS-003-0000-2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutfi A. Hasnowo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasnowo, L.A., Larkina, M.S., Garapatski, A.A. et al. The development of cyclotron-based radiopharmaceuticals: a comprehensive review of 64Cu and 123I-radiolabeled urea-based small molecule PSMA ligands. J Radioanal Nucl Chem 332, 3523–3546 (2023). https://doi.org/10.1007/s10967-023-09048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09048-3

Keywords

Navigation