Skip to main content
Log in

Adsorption and diffusion mechanism of cesium and chloride ions in channel of geopolymer with different Si/Al ratios: molecular dynamics simulation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Geopolymer is a kind of inorganic cementitious material, which is produced by geopolymerization of activator and aluminosilicate. It can be used for solidification of radionuclides. In this study, molecular dynamics simulation was applied to investigate that the adsorption and diffusion mechanism of radioactive nuclide cesium and chloride ions in the channel of geopolymer with different Si/Al ratios. The simulation results could be characterized by density distribution, radial distribution function (RDF), hydrogen bond, mean square displacement (MSD) and diffusion coefficient. Density distribution indicated that there is an obvious aggregation of Cs+ and Cl on the channel surface. Moreover, the composition of geopolymer gel has a great influence on the dynamic characteristics of ions. With the decrease of Si/Al ratio, both MSD and diffusion coefficient of cesium and chloride ions gradually reduced. It showed that the adsorption of geopolymer channel for Cs+ and Cl gradually enhanced, and diffusion ability of Cs+ and Cl has steadily decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davidovits J (1991) Geopolymers - Inorganic polymeric new materials. J Therm Anal. https://doi.org/10.1007/BF01912193

    Article  Google Scholar 

  2. Moghadam MJ, Ajalloeian R, Hajiannia A (2019) Preparation and application of alkali-activated materials based on waste glass and coal gangue: a review. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.06.071

    Article  Google Scholar 

  3. Chen L, Wang Z, Wang Y, Feng J (2016) Preparation and properties of alkali activated metakaolin-based geopolymer. Materials (Basel). https://doi.org/10.3390/ma9090767

    Article  PubMed  PubMed Central  Google Scholar 

  4. Koshy N, Dondrob K, Hu L, Wen Q, Meegoda JN (2019) Synthesis and characterization of geopolymers derived from coal gangue, fly ash and red mud. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.02.076

    Article  Google Scholar 

  5. J. Davidovits, Geopolymer Chemistry and Applications, 2008.

  6. Geng J, Zhou M, Zhang T, Wang W, Wang T, Zhou X, Wang X, Hou H (2017) Preparation of blended geopolymer from red mud and coal gangue with mechanical co-grinding preactivation. Mater Struct Constr. https://doi.org/10.1617/s11527-016-0967-5

    Article  Google Scholar 

  7. Jin M, Zheng Z, Sun Y, Chen L, Jin Z (2016) Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments. J Non Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2016.07.036

    Article  Google Scholar 

  8. He P, Wang M, Fu S, Jia D, Yan S, Yuan J, Xu J, Wang P, Zhou Y (2016) Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram Int. https://doi.org/10.1016/j.ceramint.2016.06.033

    Article  Google Scholar 

  9. Zhang ZH, Zhu HJ, Zhou CH, Wang H (2016) Geopolymer from kaolin in China: an overview. Appl Clay Sci. https://doi.org/10.1016/j.clay.2015.04.023

    Article  Google Scholar 

  10. El-naggar KAM, Amin SK, El-sherbiny SA, Abadir MF (2019) Preparation of geopolymer insulating bricks from waste raw materials. Constr Build Mater 222:699–705. https://doi.org/10.1016/j.conbuildmat.2019.06.182

    Article  CAS  Google Scholar 

  11. Wu Y, Lu B, Bai T, Wang H, Du F, Zhang Y, Cai L, Jiang C, Wang W (2019) Geopolymer, green alkali activated cementitious material : Synthesis, applications and challenges. Constr Build Mater 224:930–949. https://doi.org/10.1016/j.conbuildmat.2019.07.112

    Article  CAS  Google Scholar 

  12. Papa E, Mor M, Murri AN, Landi E, Medri V (2020) Ice-templated geopolymer beads for dye removal. J Colloid Interface Sci 572:364–373. https://doi.org/10.1016/j.jcis.2020.03.104

    Article  CAS  PubMed  Google Scholar 

  13. Maleki A, Hajizadeh Z, Shari V, Emdadi Z (2019) A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. J Clean Prod 215:1233–1245. https://doi.org/10.1016/j.jclepro.2019.01.084

    Article  CAS  Google Scholar 

  14. Guo X, Zhang L, Huang J, Shi H (2017) Detoxification and solidification of heavy metal of chromium using fly ash-based geopolymer with chemical agents. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.05.199

    Article  Google Scholar 

  15. Walkley B, Ke X, Hussein OH, Bernal SA, Provis JL (2020) Incorporation of strontium and calcium in geopolymer gels. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121015

    Article  PubMed  Google Scholar 

  16. Guo B, Pan D, Liu B, Volinsky AA, Fincan M, Du J, Zhang S (2017) Immobilization mechanism of Pb in fly ash-based geopolymer. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2016.12.139

    Article  Google Scholar 

  17. Jang JG, Park SM, Lee HK (2016) Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2016.07.003

    Article  PubMed  Google Scholar 

  18. A.R. Leach (2001), Empirical Force Field Models: Molecular Mechanics, in: Mol. Model. Princ. Appl.

  19. D. Frenkel, B. Smit, (1996) Understanding molecular simulation: From algorithms to applications.

  20. N.S.V. Barbosa, E.R. de A. Lima, F.W. Tavares, Molecular Modeling in Chemical Engineering, Elsevier Inc., 2017. doi:https://doi.org/10.1016/b978-0-12-409547-2.13915-0.

  21. Hou D, Zhang J, Pan W, Zhang Y, Zhang Z (2020) Nanoscale mechanism of ions immobilized by the geopolymer: A molecular dynamics study. J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2019.151841

    Article  Google Scholar 

  22. Youssef M, Pellenq RJM, Yildiz B (2014) Docking 90Sr radionuclide in cement: an atomistic modeling study. Phys Chem Earth. https://doi.org/10.1016/j.pce.2013.11.007

    Article  Google Scholar 

  23. Yang W, Zaoui A (2013) Behind adhesion of uranyl onto montmorillonite surface: a molecular dynamics study. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2013.07.021

    Article  PubMed  Google Scholar 

  24. S. Plimpton, P. Crozier, A. Thompson (2007) LAMMPS-large-scale atomic/molecular massively parallel simulator, Sandia Natl. Lab.

  25. Tian Q, Nakama S, Sasaki K (2019) Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.06.095

    Article  PubMed  PubMed Central  Google Scholar 

  26. Davidovits J (1994) GEOPOLYMERS: man-made rock geosynthesis and the resulting development of very early high strength cement. J Mater Edu 16:91–91

    CAS  Google Scholar 

  27. Wang R, Wang J, Dong T, Ouyang G (2020) Structural and mechanical properties of geopolymers made of aluminosilicate powder with different SiO2/Al2O3 ratio: molecular dynamics simulation and microstructural experimental study. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117935

    Article  Google Scholar 

  28. Wang R, Wang J (2021) The effects of calcium content on molecular structure and mechanical properties of sodium aluminosilicate hydrate (NASH) gels by molecular dynamics simulation. J Non Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2020.120411

    Article  Google Scholar 

  29. Hou D, Li Z, Zhao T, Zhang P (2015) Water transport in the nano-pore of the calcium silicate phase: reactivity, structure and dynamics. Phys Chem Chem Phys. https://doi.org/10.1039/c4cp04137b

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cygan RT, Liang JJ, Kalinichev AG (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B. https://doi.org/10.1021/jp0363287

    Article  Google Scholar 

  31. Loganathan N, Yazaydin AO, Bowers GM, Kalinichev AG, Kirkpatrick RJ (2016) Structure, energetics, and dynamics of Cs+ and H2O in hectorite: molecular dynamics simulations with an unconstrained substrate surface. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.6b01016

    Article  Google Scholar 

  32. Zhang Y, Li T, Hou D, Zhang J, Jiang J (2018) Insights on magnesium and sulfate ions’ adsorption on the surface of sodium alumino-silicate hydrate (NASH) gel: a molecular dynamics study. Phys Chem Chem Phys. https://doi.org/10.1039/C8CP02469C

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abramov A, Iglauer S (2019) Application of the CLAYFF and the DREIDING force fields for modeling of alkylated quartz surfaces. Langmuir. https://doi.org/10.1021/acs.langmuir.9b00527

    Article  PubMed  Google Scholar 

  34. Wang P, Jia Y, Li T, Hou D, Zheng Q (2018) Molecular dynamics study on ions and water confined in the nanometer channel of Friedel’s salt: Structure, dynamics and interfacial interaction. Phys Chem Chem Phys. https://doi.org/10.1039/c8cp02450b

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hajilar S, Shafei B (2018) Atomic-scale investigation of physical adsorption of water molecules and aggressive ions to ettringite’s surfaces. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2017.09.019

    Article  PubMed  Google Scholar 

  36. Tsuji M, Komarneni S, Malla P (1991) Substituted Tobermorites: 27Al and 29Si MASNMR, cation exchange, and water sorption studies. J Am Ceram Soc. https://doi.org/10.1111/j.1151-2916.1991.tb06874.x

    Article  Google Scholar 

  37. Kirkpatrick RJ, Kalinichev AG, Wang J (2005) Molecular dynamics modelling of hydrated mineral interlayers and surfaces: structure and dynamics. Mineral Mag. https://doi.org/10.1180/0026461056930251

    Article  Google Scholar 

  38. Wang J, Kalinichev AG, Kirkpatrick RJ (2006) Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: a molecular dynamics modeling study. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2005.10.006

    Article  Google Scholar 

  39. Wang R, Wang J, Song Q (2020) The effect of Na+ and H2O on structural and mechanical properties of coal gangue-based geopolymer: Molecular dynamics simulation and experimental study. Constr Build Mater 268:121081. https://doi.org/10.1016/j.conbuildmat.2020.121081

    Article  CAS  Google Scholar 

  40. Peskir G (2003) On the diffusion coefficient: The Einstein relation and beyond. Stoch Model. https://doi.org/10.1081/STM-120023566

    Article  Google Scholar 

  41. Haynes WM (2016) CRC Handbook Chemistry and Physics. CRC Press, Boca Raton

    Book  Google Scholar 

  42. Rard JA, Miller DG (1982) Mutual diffusion coefficients of SrC12-H2O and CsC1-H2O at 25 ℃ from Rayleigh Interferometry. J Chem SOC Faraday Trans I 78(3):887–896

    Article  CAS  Google Scholar 

  43. Sato H, Yui M, Yoshikawa H (1996) Ionic diffusion coefficients of Cs+, Pb2+, Sm3+, Ni2+, SeO2-4 and TcO4 in free water determined from conductivity measurements. J Nucl Sci Technol. https://doi.org/10.1080/18811248.1996.9732037

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (No.42207075, No.42177074), R & D program of CNBM (2021YCJS01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Ye, J., Wang, J. et al. Adsorption and diffusion mechanism of cesium and chloride ions in channel of geopolymer with different Si/Al ratios: molecular dynamics simulation. J Radioanal Nucl Chem 332, 3597–3607 (2023). https://doi.org/10.1007/s10967-023-09046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09046-5

Keywords

Navigation