Skip to main content
Log in

Biosorption of uranium from aqueous solutions using a filamentous green macroalga: performances and mechanism

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In response to the depletion of global uranium reserves and the radioactive contamination of wastewater, there is an urgent need to develop efficient, sustainable, and cost-effective uranium biosorbents. Herein, a green macroalga Rhizoclonium riparium was prepared for uranium (U(VI)) removal. The results showed that the maximum adsorption capacity of U(VI) was 80.96 mg g−1 (pH = 5, 298 K and 0.1 M NaNO3). The kinetics, isotherms and thermodynamics analysis revealed that the adsorption process was chemisorption, homogeneous monolayer adsorption, endothermic and spontaneous. Through the mechanism characterization, it was proved the adsorbed of uranium on R. riparium was mainly controlled by the complexation between U(VI) and –OH, –COOH, –NH2. Besides, the R. riparium possess high selectivity towards uranium and good recycling performance. This work highlights new opportunities for biosorbents to be obtained directly from nature and used to remove radioactive contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. IPCC (2018) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

  2. Commission E (2020) 2050 long-term strategy

  3. Jiutian Z, Zhiyong W, Jianing K, Xiangjing S, Dong X (2022) Several key issues for CCUS development in China targeting carbon neutrality. Carbon Neutral 1:1–20

    Google Scholar 

  4. Parsons J, Buongiorno J, Corradini M, Petti D (2019) A fresh look at nuclear energy. Science 363(6423):105

    CAS  PubMed  Google Scholar 

  5. Tang N, Liang J, Niu C, Wang H, Luo Y, Xing W, Ye S, Liang C, Guo H, Guo J, Zhang Y, Zeng G (2020) Amidoxime-based materials for uranium recovery and removal. J Mater Chem A 8(16):7588–7625

    CAS  Google Scholar 

  6. Burdeinyi D, Kutnii D, Levenets V, Turkin A, Marks N, Lindvall R, Treinen K (2021) Application of HRGS for forensic characterization of uranium oxides, pure uranium metals and uranium alloys. Appl Radiat Isot 177:109910

    CAS  PubMed  Google Scholar 

  7. Hodkin DJ, Stewart DI, Graham JT, Burke IT (2016) Coprecipitation of 14C and Sr with carbonate precipitation: the importance of reaction kinetics and recrystallization pathways. Sci Total Environ 562:335–343

    CAS  PubMed  Google Scholar 

  8. Yuan Y, Liao X, Fang Z, Liu N, Qiu F, Huang D, Wang B, Zhou Y (2022) Study of the performance of a bloom-forming cyanobacterium (Microcystis aeruginosa) on the biosorption of uranium. J Radioanal Nucl Chem 331(7):3183–3194

    CAS  Google Scholar 

  9. Esmaili Z, Barikbin B, Shams M, Alidadi H, Al-Musawi TJ, Bonyadi Z (2023) Biosorption of metronidazole using Spirulina platensis microalgae: process modeling, kinetic, thermodynamic, and isotherm studies. Appl. Water Sci 13(2)

  10. Moreira VR, Lebron YAR, Freire SJ, Santos LVS, Palladino F, Jacob RS (2019) Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: optimization, equilibrium and kinetics studies. Microchem J 145:119–129

    CAS  Google Scholar 

  11. Singhal RK, Basu H, Pimple MV, Manisha V, Basan MKT, Reddy AVR (2013) Spectroscopic determination of U(VI) species sorbed by the Chlorella (Chlorella pyrenoidosa) fresh water algae. J Radioanal Nucl Chem 298(1):587–592

    CAS  Google Scholar 

  12. Tran HN, Wang Y, You S, Chao H (2017) Insights into the mechanism of cationic dye adsorption on activated charcoal: The importance of π–π interactions. Process Saf Environ Prot 107:168–180

    CAS  Google Scholar 

  13. Wang X, Yu S, Wu Y, Pang H, Yu S, Chen Z, Hou J, Alsaedi A, Hayat T, Wang S (2018) The synergistic elimination of uranium (VI) species from aqueous solution using bi-functional nanocomposite of carbon sphere and layered double hydroxide. Chem Eng J 342:321–330

    CAS  Google Scholar 

  14. Orabi AH, Abdelhamid AE, Salem HM, Ismaiel DA (2021) Uranium removal using composite membranes incorporated with chitosan grafted phenylenediamine from liquid waste solution. Cellulose 2:1–19

    Google Scholar 

  15. Hamed A, Orabi A, Salem H, Ismaiel D, Saad G, Abdlhamid I, Elwahy A, Elsabee M (2022) An effective uranium removal using diversified synthesized cross-linked chitosan bis-aldehyde Schiff base derivatives from aqueous solutions. Environ Sci Pollut Res 1–22

  16. Khawassek Y, Masoud A, Taha M, Hussein A (2018) Kinetics and thermodynamics of uranium ion adsorption from waste solution using Amberjet 1200 H as cation exchanger. J Radioanal Nucl Chem 315(3):493–502

    CAS  Google Scholar 

  17. Hussein A, Youssef W, El-Sheikh A (2019) Adsorption of uranium from aqueous solutions by expanded perlite. Radiochemistry 61(5):592–597

    CAS  Google Scholar 

  18. Gan J, Zhang L, Wang Q, Xin Q, Hu E, Lei Z, Wang H, Wang H (2023) Synergistic action of multiple functional groups enhanced uranium extraction from seawater of porous phosphorylated chitosan/coal-based activated carbon composite sponge. Desalination 545:116154

    CAS  Google Scholar 

  19. Hu R, Xiao J, Wang T, Chen G, Chen L, Tian X (2020) Engineering of phosphate-functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium. Chem Eng J 379:122388

    CAS  Google Scholar 

  20. Wang B, Li Y, Zheng J, Hu Y, Hu B (2020) Efficient removal of U(VI) from aqueous solutions using the magnetic biochar derived from the biomass of a bloom-forming cyanobacterium (Microcystis aeruginosa). Chemosphere 254:126898

    CAS  PubMed  Google Scholar 

  21. Chen Z, Wang J, Pu Z, Zhao Y, Jia D, Chen H, Wen T, Hu B, Alsaedi A, Hayat T (2017) Synthesis of magnetic Fe3O4/CFA composites for the efficient removal of U(VI) from wastewater. Chem Eng J 320:448–457

    CAS  Google Scholar 

  22. Li Y, Dai Y, Tao Q, Xu L (2022) Synthesis and characterization of amino acid-functionalized chitosan/poly(vinyl alcohol) for effective adsorption of uranium. J Radioanal Nucl Chem 331(11):4753–4765

    CAS  Google Scholar 

  23. Acisli O, Khataee A, Karaca S, Sheydaei M (2016) Modification of nanosized natural montmorillonite for ultrasound-enhanced adsorption of Acid Red 17. Ultrason Sonochem 31:116–121

    CAS  PubMed  Google Scholar 

  24. Li F, Li D, Li X, Liao J, Li S, Yang J, Yang Y, Tang J, Liu N (2016) Microorganism-derived carbon microspheres for uranium removal from aqueous solution. Chem Eng J 284:630–639

    CAS  Google Scholar 

  25. Lagergren S (1898) zur theorie der sogenannten adsorption gelöster stoffe, K. Sven. Vetenskapsakad., Handl., Band (24)4:1–39

  26. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    CAS  Google Scholar 

  27. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solutions. J Sanit Eng Div Am Soc Civ Eng 89:31–60

    Google Scholar 

  28. Mei D, Li H, Liu L, Jiang L, Ma F (2021) Efficient uranium adsorbent with antimicrobial function: oxime functionalized ZIF-90. Chem Eng J 425(1):130468

    CAS  Google Scholar 

  29. Kim J, Oyola Y, Tsouris C, Hexel CR, Mayes RT, Janke CJ, Dai S (2013) Characterization of uranium uptake kinetics from seawater in batch and flow through experiments. Ind Eng Chem Res 52(27):9433–9440

    CAS  Google Scholar 

  30. Zhu J, Liu Q, Liu J, Chen R, Zhang H, Li R, Wang J (2018) Ni-Mn LDH-decorated 3D Fe-inserted and N-doped carbon framework composites for efficient uranium (VI) removal. Environ Sci Nano 5(2):467–475

    CAS  Google Scholar 

  31. Shen J, Huang G, An C, Xin X, Huang C, Rosendahl S (2018) Removal of Tetrabromobisphenol A by adsorption on pinecone-derived activated charcoals: synchrotron FTIR, kinetics and surface functionality analyses. Bioresour Technol 247:812–820

    CAS  PubMed  Google Scholar 

  32. Freundlich HMF (1906) Under die adsorption in lösungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  33. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    CAS  Google Scholar 

  34. Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    CAS  PubMed  Google Scholar 

  35. Morsy AMA (2015) Adsorptive removal of uranium ions from liquid waste solutions by phosphorylated chitosan. Environ Technol Innov 4:299–310

    Google Scholar 

  36. Cheng Y, Li F, Liu N, Lan T, Qing R (2021) A novel freeze-dried natural microalga powder for highly efficient removal of uranium from wastewater. Chemosphere 282:131084

    CAS  PubMed  Google Scholar 

  37. Erkaya IA, Arica MY, Akbulut A, Bayramoglu G (2014) Biosorption of uranium by free and entrapped Chlamydomonas reinhardtii: kinetic, equilibrium and thermodynamic studies. J Radioanal Nucl Chem 299(3):1993–2003

    CAS  Google Scholar 

  38. Lee KY, Kim KW, Baek YJ, Chung DY, Lee EH, Lee SY, Moon JK (2014) Biosorption of uranium(VI) from aqueous solution by biomass of brown algae Laminaria japonica. Water Sci Technol 70(1):136–143

    CAS  PubMed  Google Scholar 

  39. Yi Z, Yao J, Chen H, Wang F, Yuan Z, Liu X (2016) Uranium biosorption from aqueous solution onto Eichhornia crassipes. J Environ Radioact 154:43–51

    CAS  PubMed  Google Scholar 

  40. Mohammed AAER (2020) Potentiality of quercetin-sodium hydroxide Spirulina platensis in uranium biosorption from waste effluent. Int J Environ Stud 77(1):48–60

    CAS  Google Scholar 

  41. Orabi AH, El-Sayed Abdelhamid A, Salem HM, Ismaiel DA (2020) New adsorptive composite membrane from recycled acrylic fibers and Sargassum dentifolium marine algae for uranium and thorium removal from liquid waste solution. J Radioanal Nucl Chem 326:1233–1247

    CAS  Google Scholar 

  42. Khan AA, Singh RP (1987) Adsorption thermodynamics of carbofuran on Sn(IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloids Surf 24:33–42

    CAS  Google Scholar 

  43. Zhao Y, Li J, Zhang S, Chen H (2013) Efficient enrichment of uranium (VI) on amidoximated magnetite/graphene oxide composites. RSC Adv 41:18952–18959

    Google Scholar 

  44. Ma D, Wei J, Zhao Y, Chen Y, Tang S (2020) The removal of uranium using novel temperature sensitive urea-formaldehyde resin: adsorption and fast regeneration. Sci Total Environ 735:139399

    CAS  PubMed  Google Scholar 

  45. Fitri FRH, Lucia L, Hakovirta M (2021) Hydrothermal carbonization of soybean hulls for the generation of hydrochar: A promising valorization pathway for low value biomass. Environ Nanotechnol Monit Manag 16:100571

    Google Scholar 

  46. Dong Z, Zhang Z, Li Z, Feng Y, Dong W, Wang T, Cheng Z, Wang Y, Dai Y, Cao X, Liu Y, Liu Y (2021) 3D structure aerogels constructed by reduced graphene oxide and hollow TiO2 spheres for efficient visible-light-driven photoreduction of U(VI) in air-equilibrated wastewater. Environ Sci Nano 8:2372–2385

    CAS  Google Scholar 

  47. Mehio N, Ivanov AS, Ladshaw AP, Dai S, Bryantsev VS (2016) Theoretical study of oxovanadium (IV) complexation with formamidoximate: implications for the design of uranyl-selective adsorbents. Ind Eng Chem Res 55:4231–4240

    CAS  Google Scholar 

  48. Yang H, Liu X, Hao M, Xie Y, Wang X (2021) Functionalized iron-nitrogencarbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv Mater 33:2106621

    CAS  Google Scholar 

  49. Wu K, Luan L, Xing J, Ma S, Xue Z, Xu W, Niu Y (2020) Removal of Zn (II) and Co(II) from N, N-dimethylformamide by polyamidoamine dendrimers decorated silica: performance and mechanism. J Mol Liq 308:113073

    CAS  Google Scholar 

  50. Lv Z, Yang S, Chen L, Alsaedi A, Hayat T, Chen C (2019) Nanoscale zero-valent iron/magnetite carbon composites for highly efficient immobilization of U(VI). J Environ Sci 76:377–387

    Google Scholar 

  51. Jin J, Li S, Peng X, Liu W, Zhang C, Yang Y, Han L, Du Z, Sun K, Wang X (2018) HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresour Technol 256:247–253

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangxi Province (No. 20192BAB214005) and National College Students Innovation and Entrepreneurship Training Program (No. 202110405023).

Author information

Authors and Affiliations

Authors

Contributions

NL: Conceptualization, Methodology, Writing-original draft. ZF: Investigation, Methodology. YX: Investigation, Methodology. MX, LZ: Validation, Writing-review and editing. BW: Methodology, Writing—review and editing. YY: Funding acquisition, Supervision.

Corresponding author

Correspondence to Yijun Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Fang, Z., Xu, Y. et al. Biosorption of uranium from aqueous solutions using a filamentous green macroalga: performances and mechanism. J Radioanal Nucl Chem 332, 3787–3798 (2023). https://doi.org/10.1007/s10967-023-09044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09044-7

Keywords

Navigation