Skip to main content
Log in

Physical viability for nuclear batteries

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Nuclear batteries are devices that provide electrical power by converting the energy of radioactive decays. Their full operational potential depends on the actual limits set by the specific power (W/g) released by a radioisotope. This paper analyzes the main features of α-, β- or γ-emitting radioisotopes most qualified to run nuclear batteries, and provides updated values of specific power released by their decays as well as specific total energy (kWh/g) supplied over a given working period. When it is the case, the contribution coming from the daughter radionuclide is also taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Moseley HGW, Harling J (1913) The attainment of high potentials by the use of radium. Proc Royal Soc 8(605):471–476

    Google Scholar 

  2. Barham OM (2021) Comparing nuclear and chemical power sources for MEMS/NEMS applications. Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 11: 15th International Conference on Micro- and Nanosystems (MNS). Virtual, Online. August 17–19, 2021. V011T11A018. ASME Proc ASME

  3. Spencer MG, Alam T (2019) High power direct energy conversion by nuclear batteries. Appl Phys Rev 6:031305

    Article  Google Scholar 

  4. Lioliou G, Barnett AM (2022) Electron-hole pair creation and conversion efficiency in radioisotope microbatteries. Appl Radiat Isot 180:110042

    Article  Google Scholar 

  5. Iwan A, Pellowski W, Bogdanowicz KA (2021) Conversion of Radiophotoluminescence Irradiation into Electricity in Photovoltaic cells. A review of theoretical considerations and practical solutions. Energies 14(19):6186

    Article  CAS  Google Scholar 

  6. Litz M (2014) Isotope Beta-battery approaches for long-lived sensors: Technology Review. Army Research Laboratory-ARL-TR-7048

  7. Yisong L, Yang Y, Li G, Liu Y, Xu J, Xiong X, Luo S, Peng T (2020) Demonstration and aging test of a radiation resistant strontium-90 betavoltaic mechanism. Appl Phys Lett 116:153901

    Article  Google Scholar 

  8. Zamoryanskaya MV, Dementeva EV, Orekhova KN, Kravets VA, Trofimov AN, Gusev GA, Ipatova I, Burakov BE (2021) Self-glowing crystals-radioactive decay energy converters into optical emission. Mater Res Bull 142:111431

    Article  CAS  Google Scholar 

  9. Terranova ML (2022) Nuclear batteries: current context and near-term expectations. Int J Energy Res 46(14):19368–19393

    Article  Google Scholar 

  10. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM–The stopping and range of ions in matter. Nucl Instrum Meth Phys Res B 268(11,12):1818–1823

    Article  CAS  Google Scholar 

  11. Wang X, Han Y, Zhang J, Li Z, Li T, Zhao X, Wu Y (2019) The design of a direct charge nuclear battery with high energy conversion efficiency. Appl Radiat Isot 148:147–151

    Article  CAS  PubMed  Google Scholar 

  12. Raffaelle RP (2021) Nanotechnology for Space Power Devices, in “Nanotechnology in Space” Terranova ML, Tamburri E Eds., J Stanford Publishing Ltd 2022, Chap. 1:1–21

  13. Jiang T, Xu Z, Meng C, Liu Y, Tang X (2020) In-Depth analysis of the Internal Energy Conversion of Nuclear Batteries and Radiation Degradation of Key materials. Energy Technol 8(12):2020667

    Article  Google Scholar 

  14. Schmidt GR, Sutliff TJ, Dudzinski LA Radioisotope Power: A Key Technology for Deep Space Exploration. Radioisotopes–Applications in Physical Sciences., Singh N, Ed (2011) ISBN: 978-953-307-510-5, In Tech.2011

  15. Woerner DF (2018) Plans and Concepts for a new generation of RTGs for Planetary Science Missions. Proceedings of the 69th International Astronautical Congress, Bremen, Germany, 1 – 5 October 2018, IAC-18, C4, 7-C3.5, 1, x41922

  16. Dustin JS, Borrelli PA (2021) Assessment of alternative radionuclides for use in a radioisotope thermoelectric generator. Nucl Eng Des 385:111475

    Article  CAS  Google Scholar 

  17. Watkinson EJ, Ambrosi RM, Williams HR, Sarsfield MJ, Stephenson K, Weston DP, Marsh N (2017) Cerium neodymium oxide solid solution synthesis as a potential analogue for substoichiometric AmO2 for radioisotope power systems. J Nucl Mat 486:308–322

    Article  CAS  Google Scholar 

  18. Tinsley T, Sarsfield M, Stephenson K, Ambrosi R (2019) Progress and future roadmap on 241Am production for use in Radioisotope Power Systems. IEEE Aerospace Conference 2–9 March 2019:1–8

  19. Flicker H, Loferski J, Scott-Monck J (1962) Radiation defect introduction rates in N-and P-Type Silicon in the vicinity of the Radiation damage threshold. Phys Rev 128(6):2557–2563

    Article  CAS  Google Scholar 

  20. Ellis BL, Fritzsche H, Patel J, Lang J, Suppiah S (2017) Titanium Tritide Films as Betavoltaic Power sources. Fusion Sci Techn 71(4):660–665

    Article  Google Scholar 

  21. Russo J, Litz M, Ray IIW, Rosen GM, Cho H, Yu J, Bigio DI, Thomas C, Alam TR (2019) Demonstration of a Tritiated Nitroxide Nuclear Battery. Appl Radiat Isot 144:93–103

    Article  CAS  PubMed  Google Scholar 

  22. Prelas MA, Tchouaso MT (2018) High Eefficiency Dual-Cycle Conversion System using Kr-85. Appl Radiat Isot 139:70–80

    Article  CAS  PubMed  Google Scholar 

  23. Wacharasindhu T, Kwon JW, Meier DE, Robertson JD (2009) Radioisotope Microbattery based on Liquid Semiconductor. Appl Phys Lett 95:014103

    Article  Google Scholar 

  24. Prelas MA, Weaver CL, Watterman ML, Lukosi E, Schott R, Wisniewski D (2014) A review of nuclear batteries. Prog Nucl Energy 75:117–148

    Article  CAS  Google Scholar 

  25. Walker P, Carroll JJ (2005) Ups and Downs of Nuclear Isomers. Phys Today 58:39–44

    Article  CAS  Google Scholar 

  26. Hartouni EP (2009) An Assessment of Nuclear Isomers as an Energy Storage Medium. Space, Propulsion and Energy Sciences International Forum – SPESIF-2009, AIP conf Proc American Institute of Physics. Robertson GA Ed 1103:492–500

    CAS  Google Scholar 

  27. Tavares OAP, Medeiros EL, Terranova ML (2021) Partial alpha-decay half-life of 178Hfm2 isomer. Mod Phys Lett A 36(6):2150036

    Article  CAS  Google Scholar 

  28. Bushnell DM, Moses RW, Choi SH (2021) Frontiers of Space Power and Energy. NASA/TM:0016143

  29. Basu SK, Mccutchan EA (2020) Nuclear data sheets for A = 90. Nucl Data Sheets 165:1–329

    Article  CAS  Google Scholar 

  30. Mikołajczak R, Bazaniak Z, Iller E (2005) Radioisotopes for medical and industrial use during the 50-year history of the Institute of Nuclear Research. Nukleonika 50(3):S83–S87

    Google Scholar 

  31. Motobayashi T (2014) World new facilities for radioactive isotope beams. Eur Phys J Web of Conferences 66:01013

  32. Starovoitova VN, Grimm TL, Grimm K, Odeh FY, Peters WA, Afanasev A, Guardala N, Carroll J, Litz M, Adams T, Maximenko S (2018) Production of alpha and beta radioisotopes for nuclear batteries using a superconducting electron linac. ANS Trans 118(1):333–335

    Google Scholar 

  33. Latooffi NF, Alzubadi AA (2020) Investigation of the reaction cross-section for production the Radioactive Isotopes used in fabricating the Nuclear Batteries. IOP Conf Ser: Mater Sci Eng 757:012017

    Article  CAS  Google Scholar 

  34. Alzubadi AA, Nassir SS (2021) Study of the Nuclear structure for some target nuclei used in the production of Beta-emitting Radioactive Isotopes for the fabrication of Nuclear Batteries. Iraqi J Sci 62(1):116–129

    Article  Google Scholar 

  35. Lee H, Yim M-S (2016) Examination of spent fuel radiation energy conversion for electricity generation. Nucl Eng Des 300:384–392

    Article  CAS  Google Scholar 

  36. Bé M-M, Chisté V, Dulien C, Mougeot X, Chechev V, Kuzmenko N, Kondev F, Luca A, Galan M, Nichols A, Arinc A, Pearce AC, Huang X, Wang B (2017) Table of Radionuclides (vol 6 A = 22 to 242). Bureau International des Poids et Mesures Edition, Laboratoire National Henry Becquerel, 13 978-92-822-2242-3. cea-02476385

  37. Kondev FG, Wang M, Huang WJ, Naimi S, Audi G (2021) The NUBASE2020 evaluation of nuclear physics properties. Chin Phys C 45(3):030001

    Article  CAS  Google Scholar 

  38. Doran HR, Cresswell AJ, Sanderson DCW, Falconi G (2022) Nuclear data evaluation of decay heat analysis of spent nuclear fuel over 1 – 100 kyear timescale. Eur Phys J Plus 137:665

    Article  CAS  Google Scholar 

  39. Kaplan I (1962) Nuclear Physics, second ed. Addison-Wesley. Reading (Mass.) U.S.A. Chapter 10

Download references

Funding

This research did not receive any specific grants from funding agencies in the public, commercial or not-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Letizia Terranova.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, O.A.P., Terranova, M.L. Physical viability for nuclear batteries. J Radioanal Nucl Chem 332, 3933–3942 (2023). https://doi.org/10.1007/s10967-023-09034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09034-9

Keywords

Navigation