Skip to main content
Log in

Classification and authentication of materials using prompt gamma ray activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Prompt gamma ray activation analysis (PGAA) is a non-destructive nuclear measurement technique that quantifies isotopes present in a sample. Here, we use PGAA spectra to train different types of models to elucidate how discriminating these spectra are for various classes of materials. We trained discriminative models for closed set scenarios, where all possible material classes are known. We also trained class models to address open set conditions, where this enumeration is impossible. After appropriate pre-processing and data treatments, all such models performed nearly perfectly on our dataset, suggesting PGAA spectra may serve as powerful nuclear fingerprints for robust material classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data available from authors upon reasonable request.

References

  1. Eftekhari-Zadeh E, Feghhi SAH, Roshani GH (2017) Hybrid combination of multi-layer perceptron and neutron activation analysis in cement prediction. Pramana—J Phys. https://doi.org/10.1007/s12043-016-1327-2

  2. Nunes WV, Da Silva AX, Crispim VR, Schirru R (2002) Explosives detection using prompt-gamma neutron activation and neural networks. Appl Radiat Isot 56:937–943

    Article  CAS  PubMed  Google Scholar 

  3. Hossny K, Hossny AH, Magdi S, et al (2020) Detecting shielded explosives by coupling prompt gamma neutron activation analysis and deep neural networks. Sci Rep. https://doi.org/10.1038/s41598-020-70537-6

  4. Vaze S, Han K, Vedaldi A, Zisserman A (2021) Open-set recognition: a good closed-set classifier is all you need? arXiv:2110.06207

  5. Geng C, Huang S, Chen S (2018). Recent advances in open set recognition: a survey. https://doi.org/10.1109/TPAMI.2020.2981604

    Article  Google Scholar 

  6. Dietterich TG, Guyer A (2022) The familiarity hypothesis: explaining the behavior of deep open set methods. Pattern Recogn. https://doi.org/10.1016/j.patcog.2022.108931

  7. Yang J, Zhou K, Li Y, Liu Z (2021) Generalized out-of-distribution detection: a survey. arXiv:2110.11334

  8. Forina M, Oliveri P, Lanteri S, Casale M (2008) Class-modeling techniques, classic and new, for old and new problems. Chemom Intell Lab Syst 93:132–148. https://doi.org/10.1016/j.chemolab.2008.05.003

    Article  CAS  Google Scholar 

  9. Oliveri P (2017) Class-modelling in food analytical chemistry: development, sampling, optimisation and validation issues—a tutorial. Anal Chim Acta 982:9–19. https://doi.org/10.1016/j.aca.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  10. Mahynski NA, Monroe JI, Sheen DA, et al (2023) pgaa-material-authentication. https://github.com/mahynski/pgaa-material-authentication. Accessed 9 Feb 2023

  11. Mackey EA, Paul RL, Lindstrom RM et al (2005) Sources of uncertainties in prompt gamma activation analysis. J Radioanal Nucl Chem 265:273–281

    Article  CAS  Google Scholar 

  12. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2858–2830

    Google Scholar 

  13. Nadeau C, Bengio Y (2003) Inference for the generalization error, pp 239–281. https://doi.org/10.1023/A:1024068626366

  14. Bouckaert RR, Frank E (2004) Evaluating the replicability of significance tests for comparing learning algorithms. Lect Notes Comput Sci (Includ subser Lect Notes Artif Intell Lect Notes Bioinformat) 3056:3–12. https://doi.org/10.1007/978-3-540-24775-3_3

    Article  Google Scholar 

  15. Wainer J, Cawley G (2021) Nested cross-validation when selecting classifiers is overzealous for most practical applications. Expert Syst Appl 182:115222

    Article  Google Scholar 

  16. Lemaitre G, Nogueira F, Aridas CK (2017) Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J Mach Learn Res 18:1–5

    Google Scholar 

  17. Chawla N, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intel Res 16:321-357

    Article  Google Scholar 

  18. Vandeginste BGM, Massart and DL, Buydens LMC, et al (1998) Analysis of measurement tables. In: Handbook of chemometrics and qualimetrics: part B. Elsevier, pp 87–160

  19. van den Berg RA, Hoefsloot HCJ, Westerhuis JA et al (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genom 7:1–15

    Google Scholar 

  20. Wang Y, Huang H, Rudin C, Shaposhnik Y (2020) Understanding how dimension reduction tools work: an empirical approach to deciphering t-SNE, UMAP, TriMAP, and PaCMAP for data visualization, pp 1–63. arXiv:2012.04456

  21. Kluyver T, Ragan-Kelley B, Pérez F et al (2016) Jupyter Notebooks - a publishing format for reproducible computational workflows. In: Loizides F, Schmidt B (eds) Positioning and power in Academic Publishing: players, agents and agendas. IOS Press, pp 87–90

    Google Scholar 

  22. Waskom M (2021) Seaborn: statistical data visualization. J Open Sour Softw 6:3021. https://doi.org/10.21105/joss.03021

    Article  Google Scholar 

  23. Reback J, McKinney W, et al (2022) Pandas-dev/pandas: Pandas 1.4.3. 10.5281/zenodo.6702671

  24. McKinney W (2010) Data structures for statistical computing in python. In: Proceedings of the 9th python in science conference, vol 1, pp 56–61. https://doi.org/10.25080/majora-92bf1922-00a

  25. Mahynski NA (2022) pychemauth. https://github.com/mahynski/pychemauth. Accessed 9 Feb 2023

  26. Kemsley EK, Defernez M, Marini F (2019) Multivariate statistics: considerations and confidences in food authenticity problems. Food Control 105:102–112. https://doi.org/10.1016/j.foodcont.2019.05.021

    Article  Google Scholar 

  27. Rodionova OY, Titova AV, Pomerantsev AL (2016) Discriminant analysis is an inappropriate method of authentication. TrAC—Trends Analyt Chem 78:17–22. https://doi.org/10.1016/j.trac.2016.01.010

    Article  CAS  Google Scholar 

  28. Rodionova OY, Oliveri P, Pomerantsev AL (2016) Rigorous and compliant approaches to one-class classification. Chemom Intell Lab Syst 159:89–96. https://doi.org/10.1016/j.chemolab.2016.10.002

    Article  CAS  Google Scholar 

  29. Pomerantsev AL, Rodionova OY (2014) Concept and role of extreme objects in PCA/SIMCA. J Chemom 28:429–438. https://doi.org/10.1002/cem.2506

    Article  CAS  Google Scholar 

  30. Pomerantsev AL (2008) Acceptance areas for multivariate classification derived by projection methods. J Chemom 22:601–609. https://doi.org/10.1002/cem.1147

    Article  CAS  Google Scholar 

  31. Pomerantsev AL, Rodionova OY (2018) Multiclass partial least squares discriminant analysis: taking the right way—a critical tutorial. J Chemom 32:1–16. https://doi.org/10.1002/cem.3030

    Article  CAS  Google Scholar 

  32. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

Download references

Acknowledgements

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this paper to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement of any product or service by NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose. Contribution of the National Institute of Standards and Technology, not subject to US Copyright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan A. Mahynski.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2452 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahynski, N.A., Monroe, J.I., Sheen, D.A. et al. Classification and authentication of materials using prompt gamma ray activation analysis. J Radioanal Nucl Chem 332, 3259–3271 (2023). https://doi.org/10.1007/s10967-023-09024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09024-x

Keywords

Navigation