Skip to main content
Log in

Determination of thorium adsorption processes by alpha spectrometry on Co-doped ZnO nano materials; modeling and optimization

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

With increasing environmental problems, it has increased the focus on waste removal and recovery. The objective of this study was to employ Co-doped ZnO nano-material, synthesized using the gel-ignition method, for thorium (IV) adsorption. The adsorbent structure was characterized subsequently, thorium (IV) adsorption was optimized using the Response Rurface Method (RSM). The optimal combination of parameters was determined using the RSM model, where the R2 and R2Adj values were 0.9908 and 0.9639, respectively, indicating the theoretical and experimental conditions were in harmony. The experimental adsorption capacity of the Co-doped ZnO nanomaterial was found to be 121.29 mg g−1 under the specified optimum conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xi S, Zhang C, Xinghuo Z, Jing Y, Xiaojian Z, Jingsong W (2009) Removal of uranium (VI) from aqueous solution by adsorption of hematite. J Environ Radioact 100:162–166

    Article  Google Scholar 

  2. Xiu T, Liu Z, Yang L (2019) Removal of thorium and uranium from aqueous solution by adsorption on hydrated manganese dioxide. J Radioanal Nucl Chem 321:671–681

    Article  CAS  Google Scholar 

  3. Saleh TA, Agarwal S, Gupta VK (2011) Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl Catal B Environ 106:46–53

    CAS  Google Scholar 

  4. Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion (II). J Hazard Mater 183:402–409

    Article  CAS  PubMed  Google Scholar 

  5. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interf Sci 193–194:24–34

    Article  Google Scholar 

  6. Rashtbari Y, Hazrati S, Azari A, Afshin S, Fazlzadeh M, Vosoughi M (2020) A novel, eco-friendly and green synthesis of PPAC-ZnO and PPAC-nZVI nanocomposite using pomegranate peel: cephalexin adsorption experiments, mechanisms, isotherms and kinetics. Adv Powder Technol 31(4):1612–1623

    Article  CAS  Google Scholar 

  7. Ahmadi E, Kakavandi B, Azari A, Izanloo H, Gharibi H, Mahvi AH, Javid A, Hashemi SY (2016) The performance of mesoporous magnetite zeolite nanocomposite in removing dimethyl phthalate from aquatic environments. Desalin Water Treat 57(57):27768–27782

    CAS  Google Scholar 

  8. Gupta VK, Fakhri A, Agarwal S, Sadeghi N (2017) Synthesis of MnO2/cellulose fiber nanocomposites for rapid adsorption of insecticide compound and optimization by response surface methodology. Int J Biol Macromol 102:840–846

    Article  CAS  PubMed  Google Scholar 

  9. Gupta VK, Sadeghi N, Bharti AK, Fakhri A, Naji M (2017) Pt nanoparticles decorated WO3-MWCNTs nanocomposites: preparation, characterization, and adsorption behavior. J Mol Liq 229:514–519

    Article  CAS  Google Scholar 

  10. Zhang N, Qiao S, Wu H, Fakhri A, Gupta VK (2021) Sustainable nano-composites polyglutamic acid functionalized Ag/g-C3N4/SiC for the ultrasensitive colorimetric assay, visible light irradiated photocatalysis and antibacterial efficiency. Opt Mater 120:111452

    Article  CAS  Google Scholar 

  11. Agarwal S, Sadeghi N, Tyagi I, Gupta VK, Fakhri A (2016) Adsorption of toxic carbamate pesticide oxamyl from liquid phase by newly synthesized and characterized graphene quantum dots nanomaterials. J Colloid Interf Sci 478:430–438

    Article  CAS  Google Scholar 

  12. Gupta VK, Fakhri A, Sadeghi N, Rashidi S, Ibrahim AA, Asif M, Agarwal S (2017) Optimization of toxic biological compound adsorption from aqueous solution onto Silicon and Silicon carbide nanoparticles through response surface methodology. Mater Sci Eng: C 77:1128–1134

    Article  Google Scholar 

  13. Gupta VK, Agarwal S, Bharti AK, Fakhri A, Naji M (2017) Pt nanoparticles decorated WO3-MWCNTs nanocomposites: preparation, characterization, and adsorption behavior. J Mol Liq 229:514–519

    Article  CAS  Google Scholar 

  14. Li X, Zhang Z, Fakhri A, Gupta K, Agarwal S (2019) Adsorption and photocatalysis assisted optimization for drug removal by chitosan-glyoxal/Polyvinylpyrrolidone/MoS2 nanocomposites. Int J Biol Macromol 136:469–475

    Article  CAS  PubMed  Google Scholar 

  15. Gupta VK, Fakhri A, Agarwal S, Bharti AK, Naji M, Tkachey AG (2018) Preparation and characterization of TiO2 nanofibers by hydrothermal method for removal of Benzodiazepines (Diazepam) from liquids as catalytic ozonation and adsorption processes. J Mol Liq 249:1033–1038

    Article  CAS  Google Scholar 

  16. Badi MY, Esrafili A, Pasalari H, Kalantary RR, Ahmadi E, Gholami M, Azari A (2019) Degradation of dimethyl phthalate using persulfate activated by UV and ferrous ions: optimizing operational parameters mechanism and pathway. J Environ Health Sci Eng 17(2):685–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hashemi YS, Badi MY, Pasalari H, Azari A, Arfaeinia H, Kiani A (2020) Degradation of ceftriaxone from aquatic solution using a heterogeneous and reusable O3/UV/ Fe3O4@TiO2 systems: operational factors, kinetics and mineralization. Int J Environ An Ch. https://doi.org/10.1080/03067319.2020.1817909

    Article  Google Scholar 

  18. Badi MY, Esrafili A, Kalantary RR, Azari A, Ahmadi E, Gholami M (2016) Removal of diethyl phthalate from aqueous solution using persulfate-based (UV / Na2S2O8 / Fe2+) advanced oxidation process. J Mazandaran Univ Med Sci 25(132):122–135

    Google Scholar 

  19. Azari A, Mahmoudian MH, Niari MH, Eş İ, Dehganifard E, Kiani A, Javid A, Azari H, Fakhri Y, Khaneghah AM (2019) Rapid and efficient ultrasonic assisted adsorption of diethyl phthalate onto FeIIFe2IIIO4@GO: ANN-GA and RSM-DF modeling, isotherm, kinetic and mechanism study. Microchem J 150:104144

    Article  CAS  Google Scholar 

  20. Ioana-Carmen P, Petru FD, Humelnicu I, Humelnicu T, Bligh S, Richard AC (2013) Removal of uranium (VI) from aqueous systems by nanoscale zero-valent iron particles suspended in carboxy-methyl cellulose. J Nucl Mater 443(1–3):250–255

    Google Scholar 

  21. Savva I, Efstathiou M, Krasia-Christoforou T, Pashalidis I (2013) Adsorptive removal of U(VI) and Th(IV) from aqueous solutions using polymer-based electrospun PEO/PLLA fibrous membranes. J Radioannal Nucl Chem 298(3):1991–1997

    Article  CAS  Google Scholar 

  22. Liu J, Luo M, Yuan Z, Ping A (2013) Synthesis, characterization, and application of titanate nanotubes for Th(IV) adsorption. J Radioannal Nucl Chem 298:1427–1434

    Article  CAS  Google Scholar 

  23. Deb AKS, Mohanty BN, Ilaiyaraja P, Sivasubramanian K, Venkatraman B (2013) Adsorptive removal of thorium from aqueous solution using diglycolamide functionalized multi-walled carbon nanotubes. J Radioannal Nucl Chem 295:1161–1169

    Article  CAS  Google Scholar 

  24. Schierz A, Zänker H (2009) Aqueous suspensions of carbon nanotubes: Surface oxidation, colloidal stability and uranium sorption. Environ Poll 157:1088–1094

    Article  CAS  Google Scholar 

  25. Kaynar UH (2018) A modeling and optimization study by response surface methodology (RSM) on UO22+ ions adsorption using nano-MgO particles. Inorg Nano-Metal Chem 48–3:187–195

    Article  Google Scholar 

  26. Kaynar UH, Sabikoğlu İ (2018) Adsorption of thorium (IV) by amorphous silica; response surface modelling and optimization. J Radioanal Nucl Chem 318–2:823–834

    Article  Google Scholar 

  27. Sheng G, Hu B (2013) Role of solution chemistry on the trapping of radionuclide Th(IV) using titanate nanotubes as an efficient adsorbent. J Radioanal Nucl Chem 298:455–464

    Article  CAS  Google Scholar 

  28. Kaynar ÜH, Ayvacıklı M, Kaynar SÇH, U. (2014) (2014) Removal of uranium(VI) from aqueous solutions using nanoporous ZnO prepared with microwave-assisted combustion synthesis. J Radioanal Nucl Chem 299:1469–1477. https://doi.org/10.1007/s10967-014-2919-2

    Article  CAS  Google Scholar 

  29. Sharma S, Malik A, Satya S (2009) Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr(VI) removal by aspergillus lentulus AML05. J Hazard Mater 164:1198–1204

    Article  CAS  PubMed  Google Scholar 

  30. Kaynar UH, Çınar S, Çam Kaynar S, Ayvacıklı M, Aydemir T (2018) Modelling and optimization of uranium (VI) ions adsorption onto nano-ZnO/Chitosan bio-composite beads with response surface methodology (RSM). J Polym Environ 26–6:2300–2310

    Article  Google Scholar 

  31. Cao J, Wu Y, Jin Y, Yilihan P, Huang W (2014) Response surface methodology approach for optimization of the removal of chromium (VI) by NH2-MCM -41. J Taiwan Inst Chem Eng 45:860–868

    Article  CAS  Google Scholar 

  32. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977

    Article  CAS  PubMed  Google Scholar 

  33. Kaynar UH (2023) Modeling and optimization for adsorption of thorium (IV) ions using Nano Gd:ZnO: application of response surface methodology (RSM) and artificial neural network (ANN). Inorg Nano-Metal Chem. https://doi.org/10.1080/24701556.2022.2072345

    Article  Google Scholar 

  34. Yaoyao H, Huaili Z, Hong L, Zhanmei Z, Chun Z, Qian G, Yuanyuan L (2021) Highly effective and selective adsorption of thorium(IV) from aqueous solution using mesoporous graphite carbon nitride prepared by sol–gel template method. Chem Eng J 410:128321

    Article  Google Scholar 

  35. Yu SM, Chen CL, Chang PP, Wang TT, Lu SS, Wang XK (2008) Adsorption of Th(IV) onto Al-pillared rectorite: effect of pH, ionic strength, temperature, soil humic acid and fulvic acid. Appl Clay Sci 38:219–226

    Article  CAS  Google Scholar 

  36. Gok C, Turkozu DA, Aytas S (2011) Removal of Th(IV) ions from aqueous solution using bi-functionalized algae-yeast biosorbent. J Radioanal Nucl Chem 287:533–541

    Article  CAS  Google Scholar 

  37. Weheish HL, Abdou AA, Mahmoud WH (2019) (2019) Extraction and determination of Th(IV) from aqueous acidic solutions using natural cassitrite adsorbent. SN Appl Sci 1:1395. https://doi.org/10.1007/s42452-019-1481-5

    Article  CAS  Google Scholar 

  38. Khalili F, Al-Banna G. Adsorption of uranium(VI) and thorium(IV) by insolubilized humic acid from Ajloun soil—Jordan. J Environ Radioac, 146: 16–26

  39. Pan D, Fan Q, Li P, Liu S, Wu W (2011) Sorption of Th(IV) on Na-bentonite: effects of pH, ionic strength, humic substances and temperature. Chem Eng J 172:898–905

    Article  CAS  Google Scholar 

  40. Kaynar UH, Çam Kaynar S, Ekdal Karali E, Ayvacıklı M, Can N (2021) Adsorption of thorium (IV) ions by metal ion doped ZnO nanomaterial prepared with combustion synthesis: empirical modelling and process optimization by response surface methodology (RSM). App Radia Iso 178:109955

    Article  CAS  Google Scholar 

  41. Anirudhan TS, Rejeena SR (2011) Thorium (IV) removal and recovery from aqueous solutions using tannin-modified poly(glycidylmethacrylate)-grafted zirconium oxide densified cellulose. Ind Eng Chem Res 50:13288–13298

    Article  CAS  Google Scholar 

  42. Gok C, Aytas S (2013) Recovery of thorium by high-capacity biopolymeric sorbent. Sep Sci Technol 48:2115–2124

    Article  CAS  Google Scholar 

  43. Chen CL, Wang XK (2007) Sorption of Th(IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. App Radia Iso 65:155–163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study were financially supported by a Scientific Research Project of Manisa Celal Bayar University (project number 2019/166) and Scientific and Technological Research Council of Turkey (TUBITAK, project number: 1001-120M235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ümit H. Kaynar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 315 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çam-Kaynar, S., Kaynar, Ü.H. Determination of thorium adsorption processes by alpha spectrometry on Co-doped ZnO nano materials; modeling and optimization. J Radioanal Nucl Chem 332, 3025–3036 (2023). https://doi.org/10.1007/s10967-023-09021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09021-0

Keywords

Navigation