Skip to main content
Log in

Selective separation of Pu(IV) and U(VI) with bisdiglycolamde ligands: solvent extraction and DFT calculations

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The extractant tri-n-butyl phosphate (TBP) was used for the separation of Pu(IV) and U(VI) in the PUREX process, which brings phosphorus pollution problems. The ligands in accordance with the “CHON” principle will be helpful to reduce environmental pollution and pressure of subsequent waste treatment. In this work, three environmentally friendly BisDGA ligands in accordance with the “CHON” principle were used for the selective extraction Pu(IV) form U(VI) in 1-octanol system. These ligands showed highly extraction ability for Pu(IV), but hardly extracted U(VI) even under high acidity, which proves that the applicability of these extraction systems for selective separation of Pu(IV) from U(VI). The coordination chemistry of Pu(IV) by slope analyses confirmed that the ligands generated both M:L = 1:1 complexes with Pu(IV). The properties and thermodynamics of the PuL(NO3)4 complexes formed with Pu(IV) and BisDGA ligands were also investigated with the density functional theory (DFT) calculations, and the results verified the relevant experimental conclusion that the affinity of THi-PE-BisDGA for Pu(IV) is better than the other two ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yao W, Wu Y, Pang H, Wang X, Yu S, Wang X (2018) In-situ reduction synthesis of manganese dioxide@ polypyrrole core/shell nanomaterial for highly efficient enrichment of U (VI) and Eu (III). Sci Chin Chem 61:812–823

    Article  CAS  Google Scholar 

  2. Musikas CJMP (1997) Completely incinerable extractants for the nuclear industry––a review. Miner Process Extr Metall Rev 17(1–4):109–142

    Article  CAS  Google Scholar 

  3. Verma PK, Kumari N, Pathak PN, Sadhu B, Sundararajan M, Aswal VK, Mohapatra PK (2014) Investigations on preferential Pu(IV) extraction over U(VI) by N, N-dihexyloctanamide versus Tri-n-butyl phosphate: evidence through small angle neutron scattering and DFT studies. J Phys Chem A 118:3996–4004. https://doi.org/10.1021/jp503037q

    Article  CAS  PubMed  Google Scholar 

  4. Madic, C., Testard, F., Hudson, M. J., Liljenzin, J. O., Christiansen, B., Ferrando, M., et al.: Partnew - new solvent extraction processes for minor actinides-final report. External Organization. (2004)

  5. Sengupta A, Ali SM, Shenoy KTJP (2016) Understanding the complexation of the Eu3+ ion with TODGA, CMPO, TOPO and DMDBTDMA: extraction, luminescence and theoretical investigation. Polyhedron 117:612–622

    Article  CAS  Google Scholar 

  6. Patil AB, Shinde VS, Pathak P, Mohapatra PK (2015) New extractant N, N‘-dimethyl-N, N‘-dicyclohexyl-2, (2‘-dodecyloxyethyl)-malonamide (DMDCDDEMA) for radiotoxic acidic waste remediation: synthesis, extraction and supported liquid membrane transport studies. Sep Purif Technol 145:83–91. https://doi.org/10.1016/j.seppur.2015.02.041

    Article  CAS  Google Scholar 

  7. Ananda K, Bholanath M, Prasanta KM, Richard Thichur PV, Darshan BS, Raj BB, Jurriaan H, Willem V (2021) Highly efficient and selective extraction of Pu(IV) using two alkyl-substituted amides of nitrilo triacetic acid from nitric acid solutions. Sep Purif Technol 279:119584. https://doi.org/10.1016/j.seppur.2021.119584

    Article  CAS  Google Scholar 

  8. Zhang X, Wu Q, Lan J, Yuan L, Xu C, Chai Z, Shi W (2019) Highly selective extraction of Pu (IV) and Am (III) by N, N′-diethyl-N, N′-ditolyl-2,9-diamide-1,10-phenanthroline ligand: an experimental and theoretical study. Sep Purif Technol 223:274–281. https://doi.org/10.1016/j.seppur.2019.04.072

    Article  CAS  Google Scholar 

  9. Weling P, Müllich U, Guerinoni E, Geist A, Panak PJJH (2020) Solvent extraction of An(III) and Ln(III) using TODGA in aromatic diluents to suppress third phase formation. Hydrometallurgy 192:105248

    Article  Google Scholar 

  10. Ren P, Wang CZ, Tao WQ, Yang XF, Yang SL, Yuan LY, Chai ZF, Shi WQ (2020) Selective separation and coordination of europium(III) and americium(III) by bisdiglycolamide ligands: solvent extraction, spectroscopy, and DFT calculations. Inorg Chem 59:14218–14228. https://doi.org/10.1021/acs.inorgchem.0c02011

    Article  CAS  PubMed  Google Scholar 

  11. Maria B, Clotilde G, Sylvia G, Vasilii KK, Alexander NT (2018) Speciation of uranium(VI) extracted from acidic nitrate media by TODGA into molecular and ionic solvents. Sep Purif Technol 203:11–19. https://doi.org/10.1016/j.seppur.2018.04.003

    Article  CAS  Google Scholar 

  12. Panja S, Mohapatra PK, Tripathi SC, Gandhi PM, Janardan P (2012) A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep Purif Technol 96:289–295. https://doi.org/10.1016/j.seppur.2012.06.015

    Article  CAS  Google Scholar 

  13. Andreas W, Giuseppe M, Michal S, Andreas G, Daniel M (2012) The recovery of An(III) in an innovative-sanex process using a todga-based solvent and selective stripping with a hydrophilic BTP. Procedia Chemistry 7:418–424. https://doi.org/10.1016/j.proche.2012.10.065

    Article  CAS  Google Scholar 

  14. Wilden A, Modolo G, Lange S, Sadowski F, Beele BB, Skerencak-Frech A, Panak PJ, Iqbal M, Verboom W, Geist A, Bosbach D (2014) Modified diglycolamides for the An(III) plus LN(III) co-separation: evaluation by solvent extraction and time-resolved laser fluorescence spectroscopy. Solvent Extr Ion Exch 32:119–137. https://doi.org/10.1080/07366299.2013.833791

    Article  CAS  Google Scholar 

  15. Pathak PN, Ansari SA, Mohapatra PK, Manchanda VK, Patra AK, Aswal VK (2013) Role of alkyl chain branching on aggregation behavior of two symmetrical diglycolamides: small angle neutron scattering studies. J Colloid Interface Sci 393:347–351. https://doi.org/10.1016/j.jcis.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  16. Tian G, Teat SJ, Rao L (2014) Structural and thermodynamic study of the complexes of Nd(III) with N, N, N’, N’-tetramethyl-3-oxa-glutaramide and the acid analogues. Inorg Chem 53(18):9477–9485

    Article  CAS  PubMed  Google Scholar 

  17. Bhattacharyya A, Mohapatra PK, Raut DR, Leoncini A, Huskens J, Verboom W (2018) Unusual reversal in Pu and U extraction in an ionic liquid using two tripodal diglycolamide ligands: experimental and DFT studies. Solvent Extr Ion Exch 36:542–557. https://doi.org/10.1080/07366299.2018.1545285

    Article  CAS  Google Scholar 

  18. Xiao LL, Ren P, Li Y, Hua R, Wang ZF, Le ZG, Geng YX, Yu T (2019) Investigation on extraction behavior and extraction mechanism of uranium(VI) with DGA derivative into organic system from aqueous solution. Chem Pap 73:1459–1467. https://doi.org/10.1007/s11696-019-00697-x

    Article  CAS  Google Scholar 

  19. Zhipeng W, Songdong D, Xiaoyang H, Shimeng L, Dongping S, Lirong Z, Ying L, Yongdong J (2017) Selective extraction of americium(III) over europium(III) ions in nitric acid solution by NTAamide(C8) using a novel water-soluble bisdiglycolamide as a masking agent. Sep Purif Technol 181:148–158. https://doi.org/10.1016/j.seppur.2017.02.043

    Article  CAS  Google Scholar 

  20. Ren Peng, Yan Ze-Yi, Li Yang, Zuo-Miao Wu, Wang Lei, Zhao Lian-Biao, Gao Yi-Quan, Wang-Suo Wu (2017) Synthesis and characterization of bisdiglycolamides for comparable extraction of Th4+, UO2 (2+) and Eu3+ from nitric acid solution. J Radioanal Nucl Chem 312:487–494

    Article  CAS  Google Scholar 

  21. Schramke JA, Rai D, Fulton RW et al (1989) Determination of aqueous plutonium oxidation states by solvent extraction. J Radioanal Nucl Chem Art 130:333–346. https://doi.org/10.1007/BF02041353

    Article  CAS  Google Scholar 

  22. Wang Ling YunGuo, JieLee Qing, Seung Man (2019) Recent advances in metal extraction improvement: mixture systems consisting of ionic liquid and molecular extractant. Sep Purif Technol 210:292–303

    Article  CAS  Google Scholar 

  23. Adamo C, Barone V (1998) Toward chemical accuracy in the computation of NMR shieldings: the PBE0 model. Chem Phys Lett 298:113–119. https://doi.org/10.1016/S0009-2614(98)01201-9

    Article  CAS  Google Scholar 

  24. Cao X, Dolg M (2004) Segmented contraction scheme for small-core actinide pseudopotential basis sets. J Mol Struct Theochem 673(1–3):203–209

    Article  CAS  Google Scholar 

  25. Cao X, Dolg M (2006) Relativistic energy-consistent ab initio pseudopotentials as tools for quantum chemical investigations of actinide systems. Coord Chem Rev 250:900–910. https://doi.org/10.1016/j.ccr.2006.01.003

    Article  CAS  Google Scholar 

  26. Dolg M, Stoll H, Preuss H (1989) Energy-adjusted ab initio pseudopotentials for the rare earth elements. J Chem Phys 90(3):1730–1734

    Article  CAS  Google Scholar 

  27. Zhang Y, Lan J, Zhuo Z, Ge C, Zhou Z, Chai Z, Shi WJJoNM, (2019) Theoretical study on stability, mechanical and thermodynamic properties of (Pu, Zr)N. J Nucl Mater 516:264–270

    Article  CAS  Google Scholar 

  28. Wen XD, Martin RL, Roy LE, Scuseria GE, Rudin SP, Batista ER, Mccleskey TM, Scott BL, Bauer E (2012) Effect of spin-orbit coupling on the actinide dioxides AnO2 (An=Th, Pa, U, Np, Pu, and Am): a screened hybrid density functional study. J Chem Phys 137(15):416

    Article  Google Scholar 

  29. Clavaguéra-Sarrio Carine, Vallet Valérie, Maynau Daniel, Marsden Colin J (2004) Can density functional methods be used for open-shell actinide molecules? Comparison with multiconfigurational spin-orbit studies. J Chem Phys 121:5312–5321

    Article  PubMed  Google Scholar 

  30. Wiberg KB (1968) Application of the Pople-Santry-Segal complete neglect of differential overlap method to the cyclopropyl-carbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron. 24(3):1083–1096

    Article  CAS  Google Scholar 

  31. Barbara B, Piotr M, Marcin A (2012) Electron density characteristics in bond critical point (QTAIM) versus interaction energy components (SAPT): the case of charge-assisted hydrogen bonding. J Phys Chem A 116:452–459

    Article  Google Scholar 

  32. Jeanvoine Y, Miró P, Martelli F, Cramer CJ, Spezia R (2012) Electronic structure and bonding of lanthanoid(III) carbonates. Phys Chem Chem Phys 14:14822–14831. https://doi.org/10.1039/C2CP41996C

    Article  CAS  PubMed  Google Scholar 

  33. Vlaisavljevich B, Miró P, Cramer CJ, Gagliardi L, Infante I, Liddle STJC-AEJ (2011) On the nature of actinide- and lanthanide-metal bonds in heterobimetallic compounds. Chem Eur J 17:8424–8433

    Article  CAS  PubMed  Google Scholar 

  34. Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F–Y systems. J Chem Phys 117(12):5529–5542

    Article  CAS  Google Scholar 

  35. Ansari SA, Pathak P, Mohapatra PK, Manchanda VK (2012) Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem Rev 112(3):1751–1772

    Article  CAS  PubMed  Google Scholar 

  36. Sasaki Y, Sugo Y, Suzuki S, Tachimori ESJS, Exchange I (2001) The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in hno3–n-dodecane system. Solvent Extr Ion Exch 19(1):91–103

    Article  CAS  Google Scholar 

  37. Ansari SA, Pathak PN, Manchanda VK, Husain M, Prasad AK, Parmar VSJSE, Exchange I (2005) N, N, N’, N’-Tetraoctyl Diglycolamide (TODGA): A promising extractant for actinide-partitioning from high-level waste(HLW). Solvent Extr Ion Exch 23(4):463–479

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 22266001and 22276175) and the Jiangxi Provincial Natural Science Foundation (Grant 20224BAB203007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Ren or Ping-Wen Huang.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HL., Zhou, B., Qi, M. et al. Selective separation of Pu(IV) and U(VI) with bisdiglycolamde ligands: solvent extraction and DFT calculations. J Radioanal Nucl Chem 332, 3361–3369 (2023). https://doi.org/10.1007/s10967-023-09005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09005-0

Keywords

Navigation