Skip to main content
Log in

Real-time monitoring of uranium concentration in NaCl–MgCl2–UCl3 molten salt

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Real-time monitoring of uranium concentration in molten salt reactors (MSR) is crucial for reactor operation and safety. However, conventional analytical methods cannot provide accurate results when uranium concentrations exceed approximately 4 wt%. We report an electrochemical technique based on repeating chronoamperometry (RCA) for precise and accurate measurements of uranium concentrations > 10 wt% in a NaCl–MgCl2–UCl3 molten salt. Uranium concentration was measured in a molten salt containing 5–12.5 wt% of uranium chloride with high precision and a linearity close to 1. The RCA technique can be used for measuring the concentration of nuclear fuel in MSRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Serp J, Allibert M, Beneš O, Delpech S, Feynberg O, Ghetta V, Heuer D, Holcomb D, Ignatiev V, Kloosterman JL, Luzzi L, Merle-Lucotte E, Uhlíř J, Yoshioka R, Zhimin D (2014) The molten salt reactor (MSR) in generation IV: overview and perspectives. Prog Nucl Energy 77:308–319

    Article  CAS  Google Scholar 

  2. Locatelli G, Mancini M, Todeschini N (2013) Generation IV nuclear reactors: current status and future prospects. Energy Policy 61:1503–1520

    Article  Google Scholar 

  3. Badawy ME (2013) Safety assessment of molten salt reactors in comparison with light water reactors. J Radiat Res Appl Sci 6(2):63–70

    Google Scholar 

  4. Cottrell W, Hungerford H, Leslie J, Meem J (1955) Operation of the aircraft reactor experiment; Technical Report; Oak Ridge National Lab., Tenn., Oak Ridge, TN

  5. Luo R, Liu C, Macián-Juan R (2021) Investigation of control characteristics for a molten salt reactor plant under normal and accident conditions. Energies 14(17):5279–5302

    Article  CAS  Google Scholar 

  6. Porter T, Vaka MM, Steenblik P, Della Corte D (2022) Computational methods to simulate molten salt thermophysical properties. Commun Chem 5(1):69–84

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yeon J-W et al (2014) Research on the actinide chemistry in molten salt. KAERI/RR-3778/2014, Korea Atomic Research Institute

  8. Ignatiev V, Merzlyakov A, Afonichkin V, Khokhlov V, Salyulev A (2002) Transport properties of molten-salt reactor fuel mixtures: the case of Na, Li, Be/F and Li, Be, Th/F salts. In: Proceedings of the seventh information exchange meeting on actinide and fission product partitioning and transmutation, Jeju, pp 14–16

  9. Cumberland RM, Yim M-S (2014) Development of a 1D transient electrorefiner model for pyroprocess simulation. Ann Nucl Energy 71:52–59

    Article  CAS  Google Scholar 

  10. Park Y-J, Bae S-E, Cho Y-H, Kim J-Y, Song K (2011) UV–vis absorption spectroscopic study for on-line monitoring of uranium concentration in LiCl–KCl eutectic salt. Microchem J 99:170–173

    Article  CAS  Google Scholar 

  11. Lambert H, Kerry T, Sharrad CA (2018) Preparation of uranium(III) in a molten chloride salt: a redox mechanistic study. J Radioanal Nucl Chem 317(2):925–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Masset P, Bottomley D, Konings R, Malmbeck R, Rodrigues A, Serp J, Glatz J-P (2005) Electrochemistry of uranium in molten LiCl-KCl eutectic. J Electrochem Soc 152(6):A1109–A1115

    Article  CAS  Google Scholar 

  13. Polovov IB, Volkovich VA, Charnock JM, Kralj B, Lewin RG, Kinoshita H, May I, Sharrad CA (2008) In situ spectroscopy and spectroelectrochemistry of uranium in high-temperature alkali chloride molten salts. Inorg Chem 47(17):7474–7482

    Article  CAS  PubMed  Google Scholar 

  14. Hoover RO, Shaltry MR, Martin S, Sridharan K, Phongikaroon S (2014) Electrochemical studies and analysis of 1–10 wt% UCl3 concentrations in molten LiCl-KCl eutectic. J of Nucl Mater 452(1–3):389–396

    Article  CAS  Google Scholar 

  15. Fujii T, Uda T, Fukasawa K, Uehara A, Sato N, Nagai T, Kinoshita K, Koyama T, Yamana H (2013) Quantitative analysis of trivalent uranium and lanthanides in a molten chloride by absorption spectrophotometry. J Radioanal Nucl Chem 296:255–259

    Article  CAS  Google Scholar 

  16. Shaltry MR, Allahar KN, Butt DP, Simpson MF, Phongikaroon S (2020) Electrochemical impedance spectroscopy and cyclic voltammetry methods for monitoring SmCl3 concentration in molten eutectic LiCl-KCl. J Nucl Fuel Cycle Waste Technol 18(INL/JOU-15-34095-Rev000):1–18

    Article  Google Scholar 

  17. Kim T-J, Jung Y, Kim S-H, Paek S-W, Ahn D-H, Lee H-S (2011) Elucidation of electrode reaction of EuCl3 in LiCl-KCl eutectic melts through CV curve analysis. Bull Korean Chem Soc 32:863–866

    Article  CAS  Google Scholar 

  18. Wang CS, Liu Y, He H, Gao FX, Liu LS, Chang SW, Guo JH, Chang L, Li RX, Ouyang YG (2013) Electrochemical separation of uranium and cerium in molten LiCl-KCl. J of Radioanal and Nucl Chem 298:581–586

    Article  CAS  Google Scholar 

  19. Zhang C, Wallace J, Simpson MF (2018) Electrochemical measurement of high concentrations of UCl3 and GdCl3 in molten LiCl-KCl eutectic. Electrochim Acta 290:429–439

    Article  CAS  Google Scholar 

  20. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95(2):197–206

    Article  CAS  Google Scholar 

  21. Kim D-H, Park T-H, Bae S-E, Lee N, Kim J-Y, Cho Y-H, Yeon J-W, Song K (2016) Electrochemical preparation and spectroelectrochemical study of neptunium chloride complexes in LiCl–KCl eutectic melts. J Radioanal Nucl Chem 308(1):31–36

    Article  CAS  Google Scholar 

  22. Yoon D, Pormatikul J, Shaltry M, Phongikaroon S, Allahar K (2019) Determination of kinetic properties of Sm(III)/Sm(II) reaction in LiCl–KCl molten salt using cyclic voltammetry and electrochemical impedance spectroscopy. J Radioanal Nucl Chem 322(2):1031–1037

    Article  CAS  Google Scholar 

  23. Williams T, Shum R, Rappleye D (2021) Review—concentration measurements in molten chloride salts using electrochemical methods. J Electrochem Soc 168:123510–123523

    Article  CAS  Google Scholar 

  24. Kim D-H, Bae S-E, Park T-H, Kim J-Y, Lee C-W, Song K (2014) Real-time monitoring of metal ion concentration in LiCl–KCl melt using electrochemical techniques. Microchem J 114:261–265

    Article  CAS  Google Scholar 

  25. Yoon D, Paek S, Lee C (2022) Chlorination of uranium metal to uranium trichloride using ammonium chloride. J Radioanal Nucl Chem 331(5):2209–2216

    Article  CAS  Google Scholar 

  26. Ding W, Bonk A, Gussone J, Bauer T (2018) Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage. J Energy Storage 15:408–414

    Article  Google Scholar 

  27. Kim D-H, Bae S-E, Park T-H, Kim J-Y, Park Y-S, Park YJ, Cho YH, Yeon J-W, Song K (2014) electrochemical reactions of uranium trichloride on a graphene surface in LiCl-KCl molten salts. Electrochem 82(6):462–466

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Molten Salt Reactor Development Agency grant funded by the Korea government (the Ministry of Science and ICT) (Project No. RS-2023-00261146). This work was also supported by the Korea Atomic Energy Research Institute Program (Project No. 522330-22). CJ acknowledges the National Research Foundation of Korea (NRF) for grants (2021M2E1A1085202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Eun Bae.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, CY., Kim, TH. & Bae, SE. Real-time monitoring of uranium concentration in NaCl–MgCl2–UCl3 molten salt. J Radioanal Nucl Chem 332, 5233–5238 (2023). https://doi.org/10.1007/s10967-023-09000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09000-5

Keywords

Navigation