Skip to main content
Log in

Characterization of iron oxides-based red pigments in the ancient Gaya region, South Korea

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The characteristics of red pigments of the Gaya cultural circles, the ancient federation kingdom in the southern part of the Korean Peninsula, have been investigated using multiple analyses (SEM–EDS, XRD, Raman and Mössbauer spectroscopy). In results, reddish ochre- and pure hematite-based pigments were distinguished. In addition, as the redness of the pigment increased, the proportion of well crystalline and magnetically ordered α-Fe2O3 phase also increased, whereas the amorphous and superparamagnetic Fe2O3 phase were decreased. These results indicate that the ancient Gaya people produced various red pigments according to their use by thermal treatment of reddish ochre and high-purity iron compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gettens RJ, Stout GL (1942) Painting materials: a short encyclopaedia. D. Van Nostrand Company, New York

    Google Scholar 

  2. Watts I (2010) The pigments from pinnacle point cave 13B, Western Cape, South Africa. J Hum Evol 59:392–411. https://doi.org/10.1016/j.jhevol.2010.07.006

    Article  PubMed  Google Scholar 

  3. Siddall R (2018) Mineral pigments in archaeology: their analysis and the range of available materials. Minerals 8:201. https://doi.org/10.3390/min8050201

    Article  CAS  Google Scholar 

  4. Kim EK (2012) The meaning of vermilion from tumulus in three Kingdoms’ period. Yongnam Archaeol Rev YONGNAM KOGOHAK 61:51–74

    Google Scholar 

  5. Kawano M, Minami T, Tateishi T, Shoda S, Imazu S (2014) Review on the archaeological studies on red pigment in Japan. J Kor Field Archaeol 21:103–121

    Google Scholar 

  6. Hradil D, Grygar T, Hradilová J, Bezdička P (2003) Clay and iron oxide pigments in the history of painting. App Clay Sci 22:223–236. https://doi.org/10.1016/S0169-1317(03)00076-0

    Article  CAS  Google Scholar 

  7. Domingo I, García-Borja P, Roldán C (2012) Identification, processing and use of red pigments (hematite and cinnabar) in the Valencian early Neolithic (Spain). Archaeometry 54:868–892. https://doi.org/10.1111/j.1475-4754.2011.00650.x

    Article  CAS  Google Scholar 

  8. Lage MCSM, Cavalcante LCD, Klingelhöfer G, Fabris JD (2016) In-situ 57Fe Mössbauer characterization of iron oxides in pigments of a rupestrian painting from the Serra da Capivara National Park, in Brazil, with the backscattering Mössbauer spectrometer MIMOS II. Hyperfine Interact 237:49. https://doi.org/10.1007/s10751-016-1298-1

    Article  CAS  Google Scholar 

  9. Herrera LK, Cotte M, Jimenez de Haro MC, Duran A, Justo A, Perez-Rodriguez JL (2008) Characterization of iron oxide-based pigments by synchrotron-based micro X-ray diffraction. App Clay Sci 42:57–62. https://doi.org/10.1016/j.clay.2008.01.021

    Article  CAS  Google Scholar 

  10. Hoffman DL, Angelucci DE, Villaverde V, Zapata J, Zilhão J (2018) Symbolic use of marine shells and mineral pigments by Iberian Neandertals 115,000 years ago. Sci Adv 4:5255. https://doi.org/10.1126/sciadv.aar5255

    Article  CAS  Google Scholar 

  11. Hoffman DL, Standish CD, García-Diez M, Pettitt PB, Milton JA, Zilhão J, Alcolea-González JJ, Cantalejo-Duarte P, Collado H, De Balbín R, Lorblanchet M, Ramos-Munoz J, Weniger G-Ch, Pike AWG (2018) U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science 359:912–915. https://doi.org/10.1126/science.aap7778

    Article  CAS  Google Scholar 

  12. Martí AP, Zilhão J, d’Errico F, Cantalejo-Duarte P, Domínguez-Bella S, Fullola JM, Weniger GC, Ramos-Muñoz J (2021) The symbolic role of the underground world among Middle Paleolithic Neanderthals. Proc Natl Acad Sci U S A 118:e2021495118. https://doi.org/10.1073/pnas.2021495118

    Article  CAS  Google Scholar 

  13. Pomiès MP, Menu M, Vignaud C (1999) Red Palaeolithic pigments: natural hematite or heated goethite? Archaeometry 41:275–285. https://doi.org/10.1111/j.1475-4754.1999.tb00983.x

    Article  Google Scholar 

  14. Nurdini N, Ilmi MM, Maryanti E, Setiawan P, Kadja GTM (2022) Thermally-induced color transformation of hematite: insight into the prehistoric natural pigment preparation. Heliyon 8:e10377. https://doi.org/10.1016/j.heliyon.2022.e10377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Castagnotto E, Locardi F, Slimani S, Peddis D, Gaggero L, Ferretti M (2021) Characterization of the Caput Mortuum purple hematite pigment and synthesis of a modern analogue. Dyes Pigments 185:108881. https://doi.org/10.1016/j.dyepig.2020.108881

    Article  CAS  Google Scholar 

  16. Han WR, Kim SJ, Moon DH, Park JY (2022) Study on the analysis of red pigments excavated in gaya cultural circle. Conserv Sci Stud 43:45–59

    CAS  Google Scholar 

  17. Lee HS, Lee HH, Lee KM, Han KS (2014) Study on the manufacturing technology of mural tomb in Goa-Dong of daegaya period. J Conserv Sci 30:457–466. https://doi.org/10.12654/JCS.2014.30.4.14

    Article  Google Scholar 

  18. Jang EH, Ahn BC (1999) Red pigment used on the piece of textile excavated from tomb no. 11 of Kyodong in Changyong. Conserv Sci Muesum 1:87–91. https://doi.org/10.22790/conservation.1999.1.0087

    Article  Google Scholar 

  19. Lerf A, Wagner FE, Dreher M, Espejo T, Pérez-Rodríguez JL (2021) Mössbauer study of iron gall inks on historical documents. Herit Sci 9:49. https://doi.org/10.1186/s40494-021-00522-3

    Article  CAS  Google Scholar 

  20. Tsatskin A, Gendler TS (2016) Identification of “red ochre” in soil at Kfar HaHoresh Neolithic site, Israel: magnetic measurements coupled with materials characterization. J Archaeol Sci Rep 6:284–292. https://doi.org/10.1016/j.jasrep.2016.02.027

    Article  Google Scholar 

  21. Novakova AA, Denisov VO, Boeva NM, Tsatskin A (2020) Study of the argillaceous soil and late stone age ceramics made of It. Crystallogr Rep 65:376–380. https://doi.org/10.1134/S1063774520030232

    Article  CAS  Google Scholar 

  22. Lee MH, Han MS, Uhm YR, Kim CS (2021) Phase analysis of iron oxides forming the red pigment layer of the ancient earthenwares excavated from the southern Korean Peninsula. J Radioanal Nucl Chem 330:529–538. https://doi.org/10.1007/s10967-021-07866-x

    Article  CAS  Google Scholar 

  23. Murad E (1988) Properties and behavior of iron oxides as determined by Mössbauer spectroscopy. In: Stucki JW, Goodman BA, Schwertmann U (eds) Iron in soils and clay minerals. Springer, Dordrecht. https://doi.org/10.1007/BF02351598

    Chapter  Google Scholar 

  24. Murad E (1989) Poorly-crystalline minerals and complex mineral assemblages. Hyperfine Interact 47:33–53. https://doi.org/10.1007/BF02351598

    Article  Google Scholar 

  25. Cao X, Prozorov R, Koltypin Yu, Kataby G, Felner I, Gedanken A (1997) Synthesis of pure amorphous Fe2O3. J Mter Res 12:02–406. https://doi.org/10.1557/JMR.1997.0058

    Article  Google Scholar 

  26. Mashlan M, Zboril R, Machala L, Vujtek M, Walla J, Nomura K (2004) Mössbauer spectroscopy in study of thermally induced crystallization of amorphous Fe2O3 nanoparticles. J Metastab Nanocryst Mater 20–21:641–647. https://doi.org/10.4028/www.scientific.net/JMNM.20-21.641

    Article  Google Scholar 

  27. Ayyub P, Multani M, Barma M, Palkar VR, Vijayaraghavan R (1988) Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3. J Phys C Solid State Phys 21:2229–2245

    Article  CAS  Google Scholar 

  28. Hansen MF, Koch CB, Mørup S (2000) Magnetic dynamics of weakly and strongly interacting hematite nanoparticles. Phys Rev B Condens Matter 62:1124–1135. https://doi.org/10.1103/PhysRevB.62.1124

    Article  CAS  Google Scholar 

  29. Bødker F, Hansen MF, Koch CB, Lefmann K, Mørup S (2000) Magnetic properties of hematite nanoparticles. Phys Rev B Condens Matter 61:6826–6838. https://doi.org/10.1103/PhysRevB.61.6826

    Article  Google Scholar 

  30. Bødker F, Mørup S (2000) Size dependence of the properties of hematite nanoparticles. Europhys Lett 52:217–223. https://doi.org/10.1209/epl/i2000-00426-2

    Article  Google Scholar 

  31. Kuhn LT, Lefmann K, Bahl CRH, Ancona SN, Lindgård PA, Frandsen C, Madsen DE, Mørup S (2006) Neutron study of magnetic excitations in 8-nm α-Fe2O3 nanoparticles. Phys Rev B Condens Matter 74:184406. https://doi.org/10.1103/PhysRevB.74.184406

    Article  CAS  Google Scholar 

  32. Murad E, Fabris JD (2010) Kaolin mining and beneficiation: the role of iron. J Phys Conf Ser 217:012066. https://doi.org/10.1088/1742-6596/217/1/012066

    Article  CAS  Google Scholar 

  33. Heller-Kallai L, Rozenson I (1981) The use of mössbauer spectroscopy of iron in clay mineralogy. Phys Chem Miner 7:223–238. https://doi.org/10.1007/BF00311893

    Article  CAS  Google Scholar 

  34. Drits VA, Dainyak LG, Muller F, Besson G, Manceau A (1997) Isomorphous cation distribution in celadonites, glauconites and fe-illites determined by infrared, moessbauer and EXAFS spectroscopies. Clay Miner 32:153–179

    Article  CAS  Google Scholar 

  35. Smyth JR, Dyar MD, May HM, Bricker OP, Acker JG (1997) Crystal structure refinement and mössbauer spectroscopy of an ordered. Triclinic Clinochlore Clays Clay Miner 45:544–550. https://doi.org/10.1346/CCMN.1997.0450406

    Article  CAS  Google Scholar 

  36. Kodama H, Longworth G, Townsend MG (1982) A Mössbauer investigation of some chlorites and their oxidation products. Can Mineral 20:585–592

    CAS  Google Scholar 

  37. Memon M, Memon KS, Akhtar MS, Stüben D (2009) Characterization and quantification of iron oxides occurring in low concentration in soils. Commun Soil Sci Plant Anal 40:162–178. https://doi.org/10.1080/00103620802649005

    Article  CAS  Google Scholar 

  38. De Grave E, Bowen LH, Vochten R, Vandenberghe RE (1988) The effect of crystallinity and Al substitution on the magnetic structure and morin transition in hematite. J Magn Magn Mat 72:141–151. https://doi.org/10.1016/0304-8853(88)90182-5

    Article  Google Scholar 

  39. Schwertmann U, Taylor RM (1989) In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci. Soc. Am., Madison, new Edn in the press

  40. Maher B, Taylor R (1988) Formation of ultrafine-grained magnetite in soils. Nature 336:368–370. https://doi.org/10.1038/336368a0

    Article  CAS  Google Scholar 

  41. Vodyanitskii YN (2013) Biogeochemical role of magnetite in urban soils. Eurasian Soil Sci 46:317–324. https://doi.org/10.1134/S1064229313030137

    Article  CAS  Google Scholar 

  42. Fouad DE, Zhang C, El-Didamony H, Yingnan L, Mekuria TD, Shah AH (2019) Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results Phys 12:1253–1261. https://doi.org/10.1016/j.rinp.2019.01.005

    Article  Google Scholar 

  43. De Faria DLA, Venâncio Silva S, De Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878. https://doi.org/10.1002/(SICI)1097-4555(199711)28:11%3c873::AID-JRS177%3e3.0.CO;2-B

    Article  Google Scholar 

  44. Hanesch M (2009) Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys J Int 177:941–948. https://doi.org/10.1111/j.1365-246X.2009.04122.x

    Article  CAS  Google Scholar 

  45. Rull F, Martinez-Frias J, Sansano A, Medina J, Edwards HGM (2004) Comparative micro-Raman study of the Nakhla and Vaca Muerta meteorites. J Raman Spectrosc 35:497–503. https://doi.org/10.1002/jrs.1177

    Article  CAS  Google Scholar 

  46. Fouad NE, Ismail HM, Zaki MI (1998) Recovery of red iron oxide pigmentary powders from chemically modified steel-plickling chemical waste. J Mater Sci Lett 17:27–29. https://doi.org/10.1023/A:1006533405891

    Article  CAS  Google Scholar 

  47. Cornell RM, Schwertmann U (2003) The iron oxide: structures, properties, reactions, occurrences and uses, 2nd edn. Wiley-VHC, Weinheim

    Book  Google Scholar 

  48. Singh B, Wilson M, McHardy W, Fraser A, Merrington G (1999) Mineralogy and chemistry of ochre sediments from an acid mine drainage near a disused mine in Cornwall, UK. Clay Miner 34:301–317. https://doi.org/10.1180/000985599546172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Cultural Heritage Research and Development (R&D) project of the National Research Institute of Cultural Heritage of the Cultural Heritage Administration. Some of the analysis data in this study were presented at the International Conference on Nuclear Analytical Techniques in 2022 (NAT2022), which was held in Daejeon, Korea, from Dec. 7 to 9, 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hyeok Moon.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, D.H., Lee, N.R., Han, W.R. et al. Characterization of iron oxides-based red pigments in the ancient Gaya region, South Korea. J Radioanal Nucl Chem 332, 5175–5184 (2023). https://doi.org/10.1007/s10967-023-08993-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08993-3

Keywords

Navigation