Skip to main content
Log in

Preparation of alkali-modified amino-functionalized magnetic loofah biochar and its adsorption properties for uranyl ions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Functional magnetic loofah (FMC) was prepared by a chemical graft of magnetic nanoparticles MnFe2O4 onto the loofah (ML) after being pretreated and carbonized by NaOH, and its adsorption properties as adsorbent for uranium-containing wastewater were studied. The results show that the equilibrium adsorption capacity of FMC for uranyl ions is 270.95 mg/g. The adsorption process is spontaneous and exothermic. Langmuir’s isothermal model and the quasi-second order model are both suitable for describing the process of adsorption. The adsorption mechanism shows that the rich oxygen-containing functional groups and amino groups on the surface of FMC bind to U(VI) through complexation, and the MnFe2O4 in FMC reacts with U(VI) to remove U(VI) from the aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Deng M, Ai Y, Zhao L, Yang P (2022) Synthesis of zeolite X from waste basalt powder and its efficient adsorption of uranyl ions in solution. J Radioanal Nucl Chem 331:4055–4065

    Article  CAS  Google Scholar 

  2. Liu C, Jinqing Lu, Tan Yi, Chen Bo, Yang P (2022) Removal of U(VI) from wastewater by sulfhydryl-functionalized biomass carbon supported nano-zero-valent iron through synergistic effect of adsorption and reduction. Mater Sci Eng B 284:115891

    Article  CAS  Google Scholar 

  3. Babel S, Kurniawan T (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:291–243

    Article  Google Scholar 

  4. Ai Y, Yin Na, Ouyang Y, Yuanxin Xu, Yang P (2022) Waste non-burn-free brick derived sulfhydryl functioned magnetic zeolites and their efficient removal of uranium(VI) ions. Appl Surf Sci 571:151241

    Article  CAS  Google Scholar 

  5. Ouyang Y, Zhao L, Deng M, Yang P, Peng G (2023) Preparation of diethylenetriamine-functionalized thiosulfate intercalated ZnNiAl-LDHs and its removal behavior and mechanism of U(VI). Chem Eng J 452:139486

    Article  CAS  Google Scholar 

  6. Yuanhe Xu, Ke G, Yin J, Lei W, Yang P (2019) Synthesis of thiol-functionalized hydrotalcite and its application for adsorption of uranium (VI). J Radioanal Nucl Chem 19:791–803

    Google Scholar 

  7. Zhang L, Sun K, Na Hu (2012) Degradation of organic matter from domestic wastewater with loofah sponge biofilm reactor. Water Sci Technol 65:190–195

    Article  CAS  PubMed  Google Scholar 

  8. Chen Q, Shi Q, Gorb SN, Li Z (2014) A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant. J Biomech 47:1332–1339

    Article  PubMed  Google Scholar 

  9. Ouyang Y, Xu Y, Zhao L, Deng M, Yang P, Peng G, Ke G (2021) Preparation of ZnNiAl-LDHs microspheres and their adsorption behavior and mechanism on U(VI). Sci Rep 11(1):21625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ren Z, Liu C, Zhang B, Maosheng Wu, Tan Yi, Fang X, Yang P, Liu L (2021) Preparation of amino-functionalized starch-based adsorbent and its adsorption behavior for uranyl ions. J Radioanal Nucl Chem 328:1253–1263

    Article  CAS  Google Scholar 

  11. Li K, Yawen Wang Mu, Huang HY, Yang Hu, Xiao S, Li A (2015) Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water. J Colloid Interface Sci 455:261–270

    Article  CAS  PubMed  Google Scholar 

  12. Deng M, Ai Y, Zhao L, Yuanxin Xu, Ouyang Y, Yang P, Peng G (2021) Preparation of NH2-CTS/MZ composites and their adsorption behavior and mechanism on uranium ions. J Radioanal Nucl Chem 330:963–978

    Article  CAS  Google Scholar 

  13. Ozdemir S, Oduncu K, Kilinc E (2017) Resistance, bioaccumulation and solid phase extraction of uranium (VI) by Bacillus vallismortis and its UV–vis spectrophotometric determination. J Environ Radioact 171:217–225

    Article  CAS  PubMed  Google Scholar 

  14. Osaci M, Cacciola M (2017) Study about the nanoparticle agglomeration in a magnetic nanofluid by the Langevin dynamics simulation model using an effective Verlet-type algorithm. Microfluid Nanofluid 21:1–14

    Article  CAS  Google Scholar 

  15. Thommes M, Kaneko K, Neimark VA, Olivier PJ, Rodriguez-Reinoso F, Rouquerol J, Sing SWK (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  16. Wang Li, Yan W, He C, Wen H, Cai Z, Wang Z, Chen Z, Liu W (2018) Microwave-assisted preparation of nitrogen-doped biochars by ammonium acetate activation for adsorption of acid red 18. Appl Surf Sci 433:222–231

    Article  CAS  Google Scholar 

  17. Yin Na, Ai Y, Yuanxin Xu, Ouyang Y, Yang P (2020) Preparation of magnetic biomass carbon aerogel and its application for adsorption of uranium(VI). J Radioanal Nucl Chem 326:1307–1321

    Article  CAS  Google Scholar 

  18. Kusaka R, Watanabe M (2018) Mechanism of phase transfer of uranyl ions: a vibrational sum frequency generation spectroscopy study on solvent extraction in nuclear reprocessing. Phys Chem Chem Phys 20:29588–29590

    Article  CAS  PubMed  Google Scholar 

  19. Podder M, Majumder C (2016) Studies on the removal of As(III) and As(V) through their adsorption onto granular activated carbon/MnFe2O4 composite: isotherm studies and error analysis. Compos Interfaces 23:327–372

    Article  CAS  Google Scholar 

  20. Guangtian L, Jianjian L, Jie Z (2022) Preparation of mannitol-modified loofah and its high-efficient adsorption of Cu(II) ions in aqueous solution. Polymers 14:4883–4883

    Article  Google Scholar 

  21. Sun G, Fang X, Huang S, Yang P (2022) Preparation of magnetically responsive carbonized tea waste and its efficient adsorption of uranyl ions. J Radioanal Nucl Chem 331:2667–2677

    Article  Google Scholar 

  22. Lv Z, Liu M, Jianping Lu (2017) Adsorption kinetics of bovine serum albumin onto NiFe2O4/SiO2 nanocomposites prepared via the rapid combustion process. J Nanosci Nanotechnol 17:9063–9068

    Article  CAS  Google Scholar 

  23. Li J, Yang P, Zhu C, Qiao W, Ke G, Liu Y (2019) Preparation of sulfhydryl functionalized magnetic SBA-15 and its high-efficiency adsorption on uranyl ion in solution. Environ Sci Pollut Res 26:34487–34498

    Article  Google Scholar 

  24. Duan C, Li J, Yang P, Ke G, Zhu C, Zhang S (2020) A facile synthesis of hierarchically porous Cu-BTC for efcient removal of uranium(VI). J Radioanal Nucl Chem 323:317–327

    Article  CAS  Google Scholar 

  25. Kong Q, Guo C, Wang B, Ji Q, Xia Y (2011) A facile preparation of carbon-supported nanoscale zero-valent iron fibers. Mater Sci Forum 1301:349–352

    Article  Google Scholar 

  26. Yuan S, Xue Z, Zhang S, Caie Wu, Feng Y, Kou X (2023) The characterization of antimicrobial nanocomposites based on chitosan, cinnamon essential oil, and TiO2 for fruits preservation. Food Chem 413:135446

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L, Xiao C, Li Z, Guo J, Guoguang Du, Cheng X, Jia Y (2023) Degradation of methyl orange using persulfate activated by magnetic CuS/Fe3O4 catalyst: catalytic performance and mechanisms. Appl Surf Sci 618:156595

    Article  CAS  Google Scholar 

  28. Chen Z, Wang J, Zengxin Pu, Zhao Y, Jia D, Chen H, Wen T, Baowei Hu, Alsaedi A, Hayat T, Wang X (2017) Synthesis of magnetic Fe3O4/CFA composites for the efficient removal of U(VI) from wastewater. Chem Eng J 320:448–457

    Article  CAS  Google Scholar 

  29. Chen L, Zhao D, Chen S, Wang X, Chen C (2016) One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. J Colloid Interface Sci 472:99–107

    Article  CAS  PubMed  Google Scholar 

  30. Marina M, Natalia M, Andrei I, Irina S, Natalia K (2020) The effect of pH on removal of toxic metal ions from aqueous solutions using composite sorbent based on Ti–Ca–Mg phosphates. J Water Process Eng 2020:101830

    Google Scholar 

  31. Liu J, Yin X, Liu T (2018) Amidoxime-functionalized metal-organic frameworks UiO-66 for U(VI) adsorption from aqueous solution. J Taiwan Inst Chem Eng 95:416–423

    Article  Google Scholar 

  32. Liu Y, Yang P, Li Qi, Liu Y, Yin J (2019) Preparation of FeS@Fe3O4 core–shell magnetic nanoparticles and their application in uranyl ions removal from aqueous solution. J Radioanal Nucl Chem 321:499–510

    Article  CAS  Google Scholar 

  33. Han M, Kong L, Xingliang Hu, Chen D, Xiong X, Zhang H, Minhua Su, Diao Z, Ruan Y (2018) Phase migration and transformation of uranium in mineralized immobilization by wasted bio-hydroxyapatite. J Clean Prod 197:886–894

    Article  CAS  Google Scholar 

  34. West Philip W (1958) L’analyse qualitative et les reactions en solution (Charlot, G.). J Chem Educ 35:A282–A282

    Article  Google Scholar 

  35. Zhang X, Jiang D, Xiao Y, Chen J, Hao S, Xia L (2019) Adsorption of uranium(VI) from aqueous solution by modified rice stem. J Chem 2019:1–10

    Article  Google Scholar 

  36. Sureshkumar M, Das D, Mallia M, Gupta P (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  CAS  PubMed  Google Scholar 

  37. Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012) Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem Eng J 210:26–32

    Article  CAS  Google Scholar 

  38. Andrei I, Vladimir P, Marina R, Olga S, Varsha S, Mike S (2022) Methylene blue adsorption on magnesium ferrite: optimization study, kinetics and reusability. Mater Today Commun 31:103594

    Article  Google Scholar 

  39. Christou C, Philippou K, Krasia-Christoforou T, Loannis P (2019) Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers. Carbohyd Polym 219:298–305

    Article  CAS  Google Scholar 

  40. Tian Y, Liu L, Ma F, Zhu X, Zhang H, Zhao F (2021) Synthesis of phosphorylated hyper-cross-linked polymers and their efficient uranium adsorption in water. J Hazard Mater 419:126538–126538

    Article  CAS  PubMed  Google Scholar 

  41. Jérémie H, Ruben P, Fariba S (2017) Adsorption of uranium over NH2-functionalized ordered silica in aqueous solutions. ACS Appl Mater Interfaces 9:15672–15684

    Article  Google Scholar 

  42. Chaudhary M, Singh L, Rekha P, Chandra V, Mohanty P (2019) Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine. Chem Eng J 378:122236–122236

    Article  CAS  Google Scholar 

  43. Liu J, Liu W, Wang Y, Meijiao Xu, Wang B (2016) A novel reusable nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted onto graphene oxide, for removing Cu(II) from aqueous solutions. Appl Surf Sci 367:327–334

    Article  CAS  Google Scholar 

  44. Alahabadi A, Singh P, Raizada P, Anastopoulos L, Sivamani S, Dotto LG, Landarani M, Lvanets A, Kyzas ZG (2020) Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid. Colloids Surf A 607:125516

    Article  CAS  Google Scholar 

  45. Liu W, Huang Y, Huang G, Fan L, Xie Y, Qin Z, Shi J (2023) Convenient sorption of uranium by Amidoxime-functionalized mesoporous silica with magnetic core from aqueous solution. J Mol Liq 375:121214

    Article  CAS  Google Scholar 

  46. Yin Na, Ai Y, Yuanxin Xu, Ouyang Y, Yang P (2020) Preparation of magnetic biomass-carbon aerogel and its application for adsorption of uranium(VI). J Radioanal Nucl Chem 326:1307–1321

    Article  CAS  Google Scholar 

  47. Hui J, Wang Y, Liu Y, Cao X, Zhang Z, Dai Y, Liu Y (2019) Effects of pH, carbonate, calcium ion and humic acid concentrations, temperature, and uranium concentration on the adsorption of uranium on the CTAB-modified montmorillonite. J Radioanal Nucl Chem 319:1251–1259

    Article  CAS  Google Scholar 

  48. Liatsou I, Michail G, Demetriou M, Pashalidis I (2017) Uranium binding by biochar fbres derived from Lufa cylindrica after controlled surface oxidation. J Radioanal Nucl Chem 311:871–875

    Article  CAS  Google Scholar 

  49. Basu H, Pimple VM, Saha S, Patel A, Dansena C, Singhal RK (2020) TiO2 microsphere impregnated alginate: a novel hybrid sorbent for uranium removal from aquatic bodies. New J Chem 44:3950–3960

    Article  CAS  Google Scholar 

  50. Zhang Y, Ye T, Wang Y, Zhou L, Liu Z (2021) Adsorption of uranium(VI) from aqueous solution by phosphorylated luffa rattan activated carbon. J Radioanal Nucl Chem 327:1267–1275

    Article  CAS  Google Scholar 

  51. Ma Y, Qi Y, Tingmei Lu, Yang L, Li Wu, Cui S, Ding Y, Zhang Z (2020) Highly efficient removal of imidacloprid using potassium hydroxide activated magnetic microporous loofah sponge biochar. Sci Total Environ 765:144253

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of Hunan Province (2021JJ30568), and the Innovation and Entrepreneurship Training Program for College Students in Hunan Province (2022X10555058, S202210555174)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Yang.

Ethics declarations

Conflict of interest

All the authors do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Li, R., Wu, M. et al. Preparation of alkali-modified amino-functionalized magnetic loofah biochar and its adsorption properties for uranyl ions. J Radioanal Nucl Chem 332, 3079–3092 (2023). https://doi.org/10.1007/s10967-023-08992-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08992-4

Keywords

Navigation